Skip to main content

Abstract

Recent advances in flow-based microfluidic biochips have enabled the emergence of lab-on-a-chip devices for bimolecular recognition and point-of-care disease diagnostics. However, the adoption of flow-based biochips is hampered today by the lack of computer-aided design tools. Manual design procedures not only delay product development but they also inhibit the exploitation of the design complexity that is possible with current fabrication techniques. In this chapter, we present the first practical problem formulation for automated control-layer design in flow-based microfluidic VLSI (mVLSI) biochips and propose a systematic approach for solving this problem. Our goal is to find an efficient routing solution for control-layer design with a minimum number of control pins. The pressure propagation delay, an intrinsic physical phenomenon in mVLSI biochips, is minimized in order to reduce the response time for valves, decrease the pattern setup time, and synchronize valve actuation. Two fabricated flow-based devices and six synthetic benchmarks are used to evaluate the proposed optimization method. Compared with manual control-layer design and a baseline approach, the proposed approach leads to fewer control pins, better timing behavior, and shorter channel length in the control layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Hu, T.A. Dinh, T.-Y. Ho, K. Chakrabarty, Control-layer optimization for flow-based mvlsi microfluidic biochips, in Proceedings of the 2014 International Conference on Compilers, Architecture and Synthesis for Embedded Systems, ser. CASES ’14 (ACM, New York, NY, USA, 2014), pp. 16:1–16:10. http://doi.acm.org/10.1145/2656106.2656118

  2. K. Hu, T.A. Dinh, T.-Y. Ho, K. Chakrabarty, Control-layer routing and control-pin minimization for flow-based microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 36(1), 55–68 (2017)

    Article  Google Scholar 

  3. W.H. Minhass, P. Pop, J. Madsen, System-level modeling and synthesis of flow-based microfluidic biochips, in Proceedings International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES). IEEE, 2011, pp. 225–233

    Google Scholar 

  4. W.H. Minhass, P. Pop, J. Madsen, F.S. Blaga, Architectural synthesis of flow-based microfluidic large-scale integration biochips, in Proceedings International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES). ACM, 2012, pp. 181–190

    Google Scholar 

  5. N. Amin, W. Thies, S. Amarasinghe, Computer-aided design for microfluidic chips based on multilayer soft lithography, in IEEE International Conference on Computer Design. IEEE, 2009, pp. 2–9

    Google Scholar 

  6. J. Melin, S.R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)

    Article  Google Scholar 

  7. P. Tabeling, Introduction to Microfluidics (Oxford University Press, 2010)

    Google Scholar 

  8. D.C. Leslie, C.J. Easley, E. Seker, J.M. Karlinsey, M. Utz, M.R. Begley, J.P. Landers, Frequency-specific flow control in microfluidic circuits with passive elastomeric features. Nat. Phys. 5(3), 231–235 (2009)

    Article  Google Scholar 

  9. M. Tanyeri, M. Ranka, N. Sittipolkul, C.M. Schroeder, A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11(10), 1786–1794 (2011)

    Article  Google Scholar 

  10. Y. Lim, A. Kouzani, W. Duan, Lab-on-a-chip: a component view. Microsyst. Technol. 16(12), 1995–2015 (2010)

    Article  Google Scholar 

  11. T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298(5593), 580–584 (2002)

    Article  Google Scholar 

  12. Stanford Microfluidic Foundry: Basic Design Rules, http://www.stanford.edu/group/foundry/Basic accessed:%20Design%20Rules.html. Accessed 05 Jan 2017

  13. W.H. Minhass, P. Pop, J. Madsen, T.-Y. Ho, Control synthesis for the flow-based microfluidic large-scale integration biochips, in Proceedings of the IEEE Asia and South Pacific Design Automation Conference. IEEE, 2013, pp. 205–212

    Google Scholar 

  14. R. Gómez-Sjöberg, A.A. Leyrat, D.M. Pirone, C.S. Chen, S.R. Quake, Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79(22), 8557–8563 (2007)

    Article  Google Scholar 

  15. T. Xu, K. Chakrabarty, Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips, in Proceedings ACM/IEEE Design Automation Conference. ACM, 2008, pp. 173–178

    Google Scholar 

  16. J.L. Gross, J. Yellen, Graph Theory and its Applications (CRC Press, 2005)

    Google Scholar 

  17. C.Y. Lee, An algorithm for path connections and its applications. IEEE Trans. Electron. Comput. 3, 346–365 (1961)

    Article  MathSciNet  Google Scholar 

  18. D. Brélaz, New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Hu, Z. Feng, T. Jing, X. Hong, Y. Yang, G. Yu, X. Hu, G. Yan, Forst: A 3-step heuristic for obstacle-avoiding rectilinear steiner minimal tree construction. J. Inf. Comput. Sci. 1(3), 107–116 (2004)

    Google Scholar 

  20. T.H. Cormen, Introduction to Algorithms (MIT Press, 2009)

    Google Scholar 

  21. C.-W. Lin, S.-Y. Chen, C.-F. Li, Y.-W. Chang, C.-L. Yang, Obstacle-avoiding rectilinear steiner tree construction based on spanning graphs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(4), 643–653 (2008)

    Article  Google Scholar 

  22. A.R. Wu, T.L. Kawahara, N.A. Rapicavoli, J. van Riggelen, E.H. Shroff, L. Xu, D.W. Felsher, H.Y. Chang, S.R. Quake, High throughput automated chromatin immunoprecipitation as a platform for drug screening and antibody validation. Lab Chip 12(12), 2190–2198 (2012)

    Article  Google Scholar 

  23. A.R. Wu, J.B. Hiatt, R. Lu, J.L. Attema, N.A. Lobo, I.L. Weissman, M.F. Clarke, S.R. Quake, Automated microfluidic chromatin immunoprecipitation from 2,000 cells. Lab Chip 9(10), 1365–1370 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hu, K., Chakrabarty, K., Ho, TY. (2017). Control-Layer Optimization. In: Computer-Aided Design of Microfluidic Very Large Scale Integration (mVLSI) Biochips. Springer, Cham. https://doi.org/10.1007/978-3-319-56255-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56255-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56254-4

  • Online ISBN: 978-3-319-56255-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics