Skip to main content

Abstract

This chapter gives an overview of microfluidics and microfluidic biochips. We discuss two main microfluidic biochip platforms: digital (droplet-based) microfluidic biochips (DMF) and continuous (flow-based) microfluidic biochips. We focus on flow-based biochips in this chapter as well as in the rest of the book. Flow-based microfluidics refers to a technology that utilizes microchannels and microvalves to manipulate fluid and suspended objects in a controlled manner at the nanoliter scale. Basic components and typical application areas for these devices are reviewed, and the motivation behind the work presented in this book is introduced. At the end of the chapter, we outline the structure of the book and an overview of the topics covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.B. Fair, Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3(3), 245–281 (2007)

    Article  Google Scholar 

  2. H. Becker, Microfluidics: a technology coming of age. Med. Device Technol. 19(3), 21–24 (2007)

    Google Scholar 

  3. O. Levenspiel, Chemical reaction engineering. Ind. Eng. Chem. Res. 38(11), 4140–4143 (1999)

    Article  Google Scholar 

  4. B.M. Paegel, C.A. Emrich, G.J. Wedemayer, J.R. Scherer, R.A. Mathies, High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proc. Natl. Acad. Sci. 99(2), 574–579 (2002)

    Article  Google Scholar 

  5. G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)

    Article  Google Scholar 

  6. S. Chakraborty, Microfluidics and Microfabrication (Springer, 2010)

    Google Scholar 

  7. A. Van Den Berg, P. Bergveld, Micro total analysis systems, in Proceedings of the  \(\mu \)  TAS, vol. 94, 1994, pp. 21–22

    Google Scholar 

  8. ISI Web of Science, search for topic “microfluidics”, http://www.isiknowledge.com. Accessed 05 Jan 2016

  9. United States Patent and Trademark Office, http://patft.uspto.gov. Accessed 14 Jan 2017

  10. Microfluidic Applications in the Pharmaceutical, Life Sciences, In-Vitro Diagnostic and Medical Device Markets Report 2015, http://www.i-micronews.com/medtech-report/product/p2015-microfluidic-applications-in-the-pharmaceutical-life-sciences-in-vitro-diagnostic-and-medical-device-markets.html. Accessed 05 Jan 2017

  11. Advanced Liquid Logic, http://investor.illumina.com/phoenix.zhtml?c=121127&p=irol-newsArticle&ID=1840193&highlight=. Accessed 01 Jan 2016

  12. Y. Luo, K. Chakrabarty, T.-Y. Ho, Hardware/Software Co-Design and Optimization for Cyberphysical Integration in Digital Microfluidic Biochips (Springer, 2015)

    Google Scholar 

  13. F. Su, S. Ozev, K. Chakrabarty, Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays, in Proceedings of the IEEE International Test Conference, 2004, pp. 883–892

    Google Scholar 

  14. F.K. Balagaddé, L. You, C.L. Hansen, F.H. Arnold, S.R. Quake, Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309(5731), 137–140 (2005)

    Article  Google Scholar 

  15. D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39(3), 1153–1182 (2010)

    Article  Google Scholar 

  16. M.G. Pollack, R.B. Fair, A.D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77(11), 1725–1726 (2000)

    Article  Google Scholar 

  17. R.B. Fair, A. Khlystov, T.D. Tailor, V. Ivanov, R.D. Evans, P.B. Griffin, V. Srinivasan, V.K. Pamula, M.G. Pollack, J. Zhou, Chemical and biological applications of digital-microfluidic devices. IEEE Des. Test Comput. 24(1), 10–24 (2007)

    Article  Google Scholar 

  18. M. Pollack, A. Shenderov, R. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)

    Article  Google Scholar 

  19. K. Choi, A.H. Ng, R. Fobel, A.R. Wheeler, Digital microfluidics. Ann. Rev. Anal. Chem. 5(1), 413–440 (2012). pMID: 22524226. http://dx.doi.org/10.1146/annurev-anchem-062011-143028

  20. F. Su, K. Chakrabarty, R.B. Fair, Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(2), 211–223 (2006)

    Article  Google Scholar 

  21. Z. Li, K.Y.-T. Lai, P.-H. Yu, T.-Y. Ho, K. Chakrabarty, C.-Y. Lee, High-level synthesis for micro-electrode-dot-array digital microfluidic biochips, in Proceedings of the 53rd Annual Design Automation Conference, ser. DAC ’16 (ACM, New York, NY, USA, 2016), pp. 146:1–146:6. http://doi.acm.org/10.1145/2897937.2898028

  22. Z. Li, K. Y.-T. Lai, P.-H. Yu, K. Chakrabarty, M. Pajic, T.-Y. Ho, C.-Y. Lee, Error recovery in a micro-electrode-dot-array digital microfluidic biochip? in Proceedings of the 35th International Conference on Computer-Aided Design (ACM, 2016), p. 105

    Google Scholar 

  23. G. Wang, D. Teng, Y.T. Lai, Y.W. Lu, Y. Ho, C.Y. Lee, Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnol. 8(3), 163–171 (2014)

    Article  Google Scholar 

  24. K.Y.-T. Lai, Y.-T. Yang, C.-Y. Lee, An intelligent digital microfluidic processor for biomedical detection. J. Signal Process. Syst. 78(1), 85–93 (2015). http://dx.doi.org/10.1007/s11265-014-0939-3

  25. J. Hong, Y.K. Kim, D.-J. Won, J. Kim, S.J. Lee, Three-dimensional digital microfluidic manipulation of droplets in oil medium. Sci. Rep. 5 (2015)

    Google Scholar 

  26. T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298(5593), 580–584 (2002)

    Google Scholar 

  27. J. Melin, S.R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)

    Article  Google Scholar 

  28. D.C. Duffy, J.C. McDonald, O.J. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem. 70(23), 4974–4984 (1998)

    Article  Google Scholar 

  29. M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113–116 (2000)

    Article  Google Scholar 

  30. I. Emreá Araci et al., Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves. Lab Chip 12(16), 2803–2806 (2012)

    Google Scholar 

  31. W.H. Minhass, P. Pop, J. Madsen, T.-Y. Ho, Control synthesis for the flow-based microfluidic large-scale integration biochips, in Proceedings of the IEEE Asia and South Pacific Design Automation Conference (IEEE, 2013), pp. 205–212

    Google Scholar 

  32. Stanford Microfluidic Foundry: Basic Design Rules, http://www.stanford.edu/group/foundry/Basic%20Design%20Rules.html. Accessed 05 Jan 2017

  33. T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)

    Article  Google Scholar 

  34. F. Yu, M.A. Horowitz, S.R. Quake, Microfluidic serial digital to analog pressure converter for arbitrary pressure generation and contamination-free flow control. Lab Chip 13(10), 1911–1918 (2013)

    Article  Google Scholar 

  35. C.L. Hansen, M.O. Sommer, S.R. Quake, Systematic investigation of protein phase behavior with a microfluidic formulator. Proc. Natl. Acad. Sci. 101(40), 14431–14436 (2004)

    Google Scholar 

  36. J.W. Hong, Y. Chen, W.F. Anderson, S.R. Quake, Molecular biology on a microfluidic chip. J. Phys.: Condens. Matter 18(18), S691 (2006)

    Google Scholar 

  37. M.K. Araz, A.M. Tentori, A.E. Herr, Microfluidic multiplexing in bioanalyses. J. Lab. Autom., 2211068213491408 (2013)

    Google Scholar 

  38. M.W. Toepke, V.V. Abhyankar, D.J. Beebe, Microfluidic logic gates and timers. Lab Chip 7(11), 1449–1453 (2007)

    Article  Google Scholar 

  39. E.C. Jensen, W.H. Grover, R.A. Mathies, Micropneumatic digital logic structures for integrated microdevice computation and control. J. Microelectromech. Syst. 16(6), 1378–1385 (2007)

    Article  Google Scholar 

  40. N.S.G.K. Devaraju, M.A. Unger, Pressure driven digital logic in pdms based microfluidic devices fabricated by multilayer soft lithography. Lab Chip 12(22), 4809–4815 (2012)

    Article  Google Scholar 

  41. M. Rhee, M.A. Burns, Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems. Lab Chip 9(21), 3131–3143 (2009)

    Article  Google Scholar 

  42. A. Russomanno, S. O’Modhrain, M. Burns, R.B. Gillespie, Modeling latching fluidic circuits to determine clocking limits for a refreshable braille display, in IEEE Haptics Symposium (HAPTICS) IEEE, 2016, pp. 179–184

    Google Scholar 

  43. P.N. Duncan, T.V. Nguyen, E.E. Hui, Pneumatic oscillator circuits for timing and control of integrated microfluidics. Proc. Natl. Acad. Sci. 110(45), 18104–18109 (2013)

    Google Scholar 

  44. S.-J. Kim, R. Yokokawa, S.C. Lesher-Perez, S. Takayama, Constant flow-driven microfluidic oscillator for different duty cycles. Anal. Chem. 84(2), 1152–1156 (2011)

    Article  Google Scholar 

  45. L.Y. Yeo, H.-C. Chang, P.P.Y. Chan, J.R. Friend, Microfluidic devices for bioapplications. Small 7(1), 12–48 (2011). http://dx.doi.org/10.1002/smll.201000946

  46. E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature 507(7491), 181–189 (2014). http://dx.doi.org/10.1038/nature13118

  47. I. Meyvantsson, D.J. Beebe, Cell culture models in microfluidic systems. Ann. Rev. Anal. Chem. 1(1), 423–449 (2008), pMID: 20636085. http://dx.doi.org/10.1146/annurev.anchem.1.031207.113042

  48. S. Halldorsson, E. Lucumi, R. Gmez-Sjberg, R.M. Fleming, Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 63, 218–231 (2015). http://www.sciencedirect.com/science/article/pii/S0956566314005302

  49. M.J. Tomlinson, S. Tomlinson, X.B. Yang, J. Kirkham, Cell separation: terminology and practical considerations. J. Tissue Eng. 4, 2041731412472690 (2013)

    Article  Google Scholar 

  50. C.W. Shields IV, C.D. Reyes, G.P. López, Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5), 1230–1249 (2015)

    Article  Google Scholar 

  51. M. Zhao, P.G. Schiro, J.S. Kuo, K.M. Koehler, D.E. Sabath, V. Popov, Q. Feng, D.T. Chiu, An automated high-throughput counting method for screening circulating tumor cells in peripheral blood. Anal. Chem. 85(4), 2465–2471 (2013)

    Article  Google Scholar 

  52. S. Yang, A. Ündar, J.D. Zahn, A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6(7), 871–880 (2006)

    Article  Google Scholar 

  53. G. Mernier, N. Piacentini, T. Braschler, N. Demierre, P. Renaud, Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting. Lab Chip 10(16), 2077–2082 (2010)

    Article  Google Scholar 

  54. S.K. Sia, L.J. Kricka, Microfluidics and point-of-care testing. Lab Chip 8, 1982–1983 (2008). http://dx.doi.org/10.1039/B817915H

  55. A. Boussommier-Calleja, R. Li, M.B. Chen, S.C. Wong, R.D. Kamm, Microfluidics: a new tool for modeling cancer–immune interactions. Trends Cancer 2(1), 6–19 (2016). http://dx.doi.org/10.1016/j.trecan.2015.12.003

  56. C.D. Chin, T. Laksanasopin, Y.K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse, G. Umviligihozo, E. Karita, L. Mwambarangwe, S.L. Braunstein, J. van de Wijgert, R. Sahabo, J.E. Justman, W. El-Sadr, S.K. Sia, Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 17(8), 1015–1019. http://dx.doi.org/10.1038/nm.2408

  57. E. Lagally, I. Medintz, R. Mathies, Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal. Chem. 73(3), 565–570 (2001)

    Article  Google Scholar 

  58. C. Zhang, J. Xu, W. Ma, W. Zheng, Pcr microfluidic devices for dna amplification. Biotechnol. Adv. 24(3), 243–284 (2006)

    Article  Google Scholar 

  59. T. Laurell, G. Marko-Varga, Miniaturisation is mandatory unravelling the human proteome. Proteomics 2(4), 345–351 (2002)

    Article  Google Scholar 

  60. H. Zhu, M. Snyder, Protein chip technology. Curr. Opin. Chem. Biol. 7(1), 55–63 (2003)

    Article  Google Scholar 

  61. E. Scrivener, R. Barry, A. Platt, R. Calvert, G. Masih, P. Hextall, M. Soloviev, J. Terrett, Peptidomics: A new approach to affinity protein microarrays. Proteomics 3(2), 122–128 (2003)

    Article  Google Scholar 

  62. D. Hou, H.-C. Chang, Ac field enhanced protein crystallization. Appl. Phys. Lett. 92(22), 223902 (2008)

    Article  Google Scholar 

  63. J.W. Hong, S.R. Quake, Integrated nanoliter systems. Nat. Biotechnol. 21(10), 1179–1183 (2003)

    Article  Google Scholar 

  64. J.M. Perkel, Life science technologies: microfluidicsbringing new things to life science. Science 322(5903), 975–977 (2008)

    Article  Google Scholar 

  65. W.H. Minhass, P. Pop, J. Madsen, System-level modeling and synthesis techniques for flow-based microfluidic very large scale integration biochips. Ph.D. dissertation, Technical University of Denmark, Department of Informatics and Mathematical Modeling, 2012

    Google Scholar 

  66. P. Pop, W.H. Minhass, J. Madsen, Microfluidic Very Large Scale Integration (VLSI) (Springer, 2016)

    Google Scholar 

  67. KNI Microuidic FoundryCalTech, http://kni.caltech.edu/facilities/index.html. Accessed 01 May 2016

  68. A. Waldbaur, B. Carneiro, P. Hettich, E. Wilhelm, B.E. Rapp, Computer-aided microfluidics (CAMF): from digital 3D-CAD models to physical structures within a day. Microfluid. Nanofluid. 15(5), 625–635 (2013)

    Article  Google Scholar 

  69. Y. Zhao, K. Chakrabarty, Cross-contamination avoidance for droplet routing in digital microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(6), 817–830 (2012)

    Article  Google Scholar 

  70. C.-Y. Lin, Y.-W. Chang, Cross-contamination aware design methodology for pin-constrained digital microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(6), 817–828 (2011)

    Article  Google Scholar 

  71. T.-W. Huang, C.-H. Lin, T.-Y. Ho, A contamination aware droplet routing algorithm for digital microfluidic biochips, in IEEE/ACM International Conference on Computer-Aided Design (IEEE, 2009), pp. 151–156

    Google Scholar 

  72. H. Chanson, Applied hydrodynamics: An Introduction to Ideal and Real Fluid Flows (CRC Press, 2009)

    Google Scholar 

  73. B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid et al., Printing meets lithography: soft approaches to high-resolution patterning. IBM J. Res. Dev. 45(5), 697–719 (2001)

    Article  Google Scholar 

  74. M. Iyengar, M. McGuire, Imprecise and qualitative probability in systems biology, in International Conference on Systems Biology, 2007

    Google Scholar 

  75. M.J. Powers, K. Domansky, M.R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K.E. Wack, D.B. Stolz, R. Kamm et al., A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol. Bioeng. 78(3), 257–269 (2002)

    Article  Google Scholar 

  76. C.A. Mein, B.J. Barratt, M.G. Dunn, T. Siegmund, A.N. Smith, L. Esposito, S. Nutland, H.E. Stevens, A.J. Wilson, M.S. Phillips et al., Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation. Genome Res. 10(3), 330–343 (2000)

    Article  Google Scholar 

  77. H.G. Kerkhoff, Testing microelectronic biofluidic systems. IEEE Design Test Comput. 1, 72–82 (2007)

    Article  Google Scholar 

  78. T. Xu, K. Chakrabarty, Fault modeling and functional test methods for digital microfluidic biochips. IEEE Trans. Biomed. Circuits Syst. 3(4), 241–253 (2009)

    Article  Google Scholar 

  79. Q. Al-Gayem, A. Richardson, H. Liu, N. Burd, An oscillation-based technique for degradation monitoring of sensing and actuation electrodes within microfluidic systems. J. Electron. Test. 27(3), 375–387 (2011)

    Article  Google Scholar 

  80. K. Chakrabarty, F. Su, Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques (CRC Press, 2006)

    Google Scholar 

  81. H. Hassanin, A. Mohammadkhani, K. Jiang, Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process. Lab Chip 12(20), 4160–4167 (2012)

    Article  Google Scholar 

  82. Multilayer Soft Lithography, http://www.youtube.com/watch?v=xWdRczefirs. Accessed 05 Jan 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hu, K., Chakrabarty, K., Ho, TY. (2017). Introduction. In: Computer-Aided Design of Microfluidic Very Large Scale Integration (mVLSI) Biochips. Springer, Cham. https://doi.org/10.1007/978-3-319-56255-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56255-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56254-4

  • Online ISBN: 978-3-319-56255-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics