Skip to main content

Selenium and the Plant Microbiome

  • Chapter
  • First Online:
Selenium in plants

Part of the book series: Plant Ecophysiology ((KLEC,volume 11))

Abstract

Studies of plant microbiomes, which include all microorganisms that occur on and inside plants, are increasingly popular in multiple fields, particularly due to advances in next generation sequencing, a technique that has advantages over traditional culture-based methods. There are many advances yet to be made with regard to the interaction of selenium (Se) and the plant microbiome. This chapter will discuss aspects of the plant microbiome as well as the discoveries to date with regard to plant-associated microbes and Se, mostly explored through culture-dependent methods. Selenium hyperaccumulators appear to harbor equally diverse microbial communities as non-hyperaccumulators, although the microbial composition may vary. Investigations have isolated a variety of microbes from plants or soil in seleniferous areas including bacteria and fungi with enhanced Se tolerance. Inoculation of plants with individual strains or consortia of microbes was able to promote plant growth, Se uptake and/or Se volatilization, which shows promise for applications in phytoremediation or biofortification. Plant-derived microbes may also be applicable for cleanup of Se from wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford ER, Pilon-Smits EAH, Paschke MW (2010) Metallophytes- a view from the rhizosphere. Plant Soil 337(1):33–50

    Article  CAS  Google Scholar 

  • Alford ER, Pilon-Smits EAH, Marcus MA, Fakra SC, Paschke MW (2012) No evidence for a cost of tolerance: selenium hyperaccumulation by Astragalus does not inhibit root nodule symbiosis. Am J Bot 99:1930–1941

    Article  CAS  PubMed  Google Scholar 

  • Alford ER, Lindblom SD, Pittarello M, Freeman JL, Fakra SC, Marcus MA, Broeckling C, Pilon-Smits EAH, Paschke MW (2014) Roles of Rhizobial symbionts in Astragalus selenium hyperaccumulation. Am J Bot 101:1895–1905

    Article  PubMed  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100(26):15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azaizeh AH, Gowthaman S, Terry N (1997) Microbial selenium volatilization in rhizosphere and bulk soils from a constructed wetland. J Environ Qual 26(3):666–672

    Article  CAS  Google Scholar 

  • Azaizeh AH, Salhani N, Sebesvari Z, Emons H (2003) The potential of rhizosphere microbes isolated from a constructed wetland to biomethylate selenium. J Environ Qual 325:55–62

    Article  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Barkes L, Fleming RW (1974) Production of dimethylselenide gas from inorganic selenium by eleven soil fungi. Bull Environ Contam Toxicol 12:308–311

    Article  CAS  PubMed  Google Scholar 

  • Basaglia M, Toffanin A, Baldan E, Bottegal M, Shapleigh JP, Casella S (2007) Selenite-reducing capacity of the copper-containing nitrite reductase of Rhizobium sullae. FEMS Microbiol Lett 269:124–130

    Article  CAS  PubMed  Google Scholar 

  • Beath OA, Gilbert CS, Eppson HF (1939) The use of indicator plants in locating seleniferous areas in western United States. I. General. Am J Bot 26(4):257–269

    Article  CAS  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7(11):1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Bergs G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  Google Scholar 

  • Chaparro JM, Badri DV, Vivance JM (2014) Rhizosphere microbiome assemblage is affected by plant development. Int Soc Microb Ecol J 8:790–803

    CAS  Google Scholar 

  • Compant S, Clemént C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999a) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–573

    Article  PubMed  PubMed Central  Google Scholar 

  • de Souza MP, Huang CPA, Chee N, Terry N (1999b) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259–263

    Article  PubMed  Google Scholar 

  • Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241

    Article  PubMed  Google Scholar 

  • Di Gregorio S, Lampis S, Malorgio F, Petruzzelli G, Pezzarossa B, Vallini G (2006) Brassica juncea can improve selenite and selenate abatement in contaminated soils through the aid of its rhizospheric bacterial population. Plant Soil 285:233–244

    Article  CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  PubMed  Google Scholar 

  • Durán P, Acuña JJ, Jorquera MA, Azcón R, Borie F, Cornejo P, Mora ML (2013) Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: a preliminary study as a potential Se biofortification strategy. J Cereal Sci 57(3):275–280

    Article  Google Scholar 

  • Durán P, Acuña JJ, Jorquera MA, Azcón R, Paredes C, Rengel Z, de la Luz MM (2014) Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol Fertil Soils 50(6):983–990

    Article  Google Scholar 

  • El Mehdawi AF, Pilon-Smits EAH (2012) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14(1):1–10

    Article  PubMed  Google Scholar 

  • El Mehdawi AF, Paschke M, Pilon-Smits EAH (2015) Symphyotrichum ericoides populations from seleniferous and non- seleniferous soil display striking variation in selenium accumulation. New Phytol 206:231–242

    Article  PubMed  Google Scholar 

  • El Mehdawi AF, Cappa JJ, Fakra SC, Self J, Pilon-Smits EAH (2012) Interactions of selenium hyperaccumulators and nonaccumulators during cocultivation on seleniferous or nonseleniferous soil- the importance of having good neighbors. New Phytol 194:264–277

    Article  PubMed  Google Scholar 

  • Evans CJACS, Johnson CM (1967) Collection and partial characterization of volatile selenium compounds from Medicago sativa L. Aust J Biol Sci 20:737–748

    Article  Google Scholar 

  • Frankenberger WT, Karlson U (1994) Microbial volatilization of selenium from soils and sediments. In: Frankenberger WT Jr, Benson S (eds) Selenium in the environment. Marcek Dekker, New York, pp 369–387

    Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173:517–525

    Article  CAS  PubMed  Google Scholar 

  • Gharieb MM, Wilkinson SC, Gadd GM (1995) Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J Ind Microbiol 14:300–311

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling process. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Hanson B, Garifullina GF, Lindblom SD, Wangeline A, Ackley A, Kramer K, Norton AP, Lawrence CB, Pilon-Smits EAH (2003) Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol 159(2):461–469

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstorff K, Diepenbrock W, Merbach W (2003) Effects of Neotyphoidum enophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass Forage Sci 58(4):407–415

    Article  Google Scholar 

  • Hunter WJ, Kuykendall DL (2007) Reduction of selenite to elemental red selenium by Rhizobium sp. strain B1. Curr Microbiol 55(4):344–349

    Article  CAS  PubMed  Google Scholar 

  • Husen A, Siddiqi KS (2014) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:28

    Article  Google Scholar 

  • Jha PN, Gupta G, Jha P, Rajesh M (2013) Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. GJAS 3(2):73–84

    Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW (1996) Host specificity in microbe-microbe interactions. Bioscience 46(6):406–409

    Article  Google Scholar 

  • Knack JJ, Wilcox LW, Delaux PM, Ané JM, Piotrowski MJ, Cook ME, Graham JM, Graham LE (2015) Microbiomes of streptophyte algae and bryophytes suggest that a functional suite of microbiota fostered plant colonization of land. Int J Plant Sci 176(5):405–420

    Article  Google Scholar 

  • Lapsansky ER, Milroy AM, Andales MJ, Vivanco JM (2016) Soil memory as a potential mechanism for encouraging sustainable plant health and productivity. Curr Opin Biotechnol 38:137–142

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH, Lobinski R, Burger-Meÿer K, Hansen M, Ruzik R, Mazurowska L, Ramussen PH, Sloth JJ, Scholten O, Kik C (2006) Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal Bioanal Chem 385:1098

    Article  CAS  PubMed  Google Scholar 

  • Lindblom SD, Valdez-Barillas JR, Fakra SC, Marcus MA, Wangeline AL, Pilon-Smits EAH (2012a) Influence of microbial associations on Selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot 88:33–42

    Article  Google Scholar 

  • Lindblom SD, Fakra SC, Landon J, Schulz P, Tracy B, Pilon-Smits EAH (2012b) Co-cultivation of Astragalus racemosus and Astragalus convallarius with selenium-hyperaccumulator rhizosphere fungi: effects on plant growth and accumulation of selenium and other elements. Planta 237:717–729

    Article  PubMed  Google Scholar 

  • Lindblom SD, Fakra SC, Landon J, Schulz P, Tracy B, Pilon-Smits EAH (2013) Inoculation of selenium hyperaccumulator Stanleya pinnata and related non-accumulator Stanleya elata with hyperaccumulator rhizosphere fungi – effects on Se accumulation and speciation. Physiol Plant 150:107–118

    Article  PubMed  Google Scholar 

  • Lins MRCR, Fontes JM, de Vasconcelos NM, da Silva Santos DM, Ferreira OE, de Azevedo JL, de Araújo JM, de Souza Lima GM (2014) Plant growth promoting potential of endophytic bacteria isolated from cashew leaves. Afr J Biotechnol 13(33):3360–3365

    Article  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; Phytohormone manipulations do not result in common growth responses. PLoS One 3(7):2702

    Article  Google Scholar 

  • Mahnert A, Moissl-Eichinger C, Berg G (2015) Microbiome interplay: plants alter microbial abundance and diversity within the built environment. Front Microbiol 6:887

    Article  PubMed  PubMed Central  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  PubMed  Google Scholar 

  • Morgan JAW, Whipps JM (2001) Methodological approaches to the study of rhizosphere carbon ow and microbial population dynamics. In: Pinton A, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 373–409

    Google Scholar 

  • Munier-Lamy C, Deneux-Mustin S, Mustin C, Merlet D, Berthelin J, Leyval C (2007) Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. J Environ Radioact 97(2–3):148–158

    Article  CAS  PubMed  Google Scholar 

  • Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18(3):208–215

    Article  Google Scholar 

  • Newton AC, Fitt BDL, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends Microbiol 18(8):365–373

    Article  CAS  PubMed  Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2014) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989

    Article  PubMed Central  Google Scholar 

  • Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20(2):207–212

    Article  CAS  PubMed  Google Scholar 

  • Quinn CF, Wyant K, Wangeline AL, Shulman J, Galeas ML, Valdez JR, Paschke MW, Pilon-Smits EAH (2011) Selenium hyperaccumulation increases leaf decomposition rate in a seleniferous habitat. Plant Soil 341:51–61

    Article  CAS  Google Scholar 

  • Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12(11):2885–2893

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443

    Article  PubMed  Google Scholar 

  • Staicu LC, van Hullebusch ED, Lens PNL, Pilon-Smits EAH, Oturan MA (2015a) Electrocoagulation of colloidal biogenic selenium. Environ Sci Pollut Res 22:3127–3137

    Article  CAS  Google Scholar 

  • Staicu LC, Ackerson CJ, Cornelis P, Ye L, Berendsen RL, Hunter WJ, Noblitt SD, Henry CS, Cappa JJ, Montenieri RL, Wong AO, Musilova L, Sura-de Jong M, van Hullebusch ED, Lens PNL, Reynolds RJB, Pilon-Smits EAH (2015b) Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions. J Appl Microbiol 119:400–410

    Article  CAS  PubMed  Google Scholar 

  • Sura-de Jong M, Reynolds RJ, Richterova K, Musilova L, Hrochova I, Frantik T, Sakmaryova I, Strejcek M, Cochran A, Staicu L, Cappa JJ, van der Lelie D, Pilon-Smits EAH (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by extreme selenium tolerance and plant growth promoting properties. Front Plant Sci 6:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.) Can J Microbiol 53:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  PubMed  Google Scholar 

  • Turner RJ, Weiner JH, Taylor DE (1998) Selenium metabolism in Escherichia coli. Biometals 11:223–227

    Article  CAS  PubMed  Google Scholar 

  • Turner TR, James EK, Poole PS (2013a) The plant microbiome. Genome Biol 14:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013b) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdez Barillas JR, Quinn CF, Freeman JL, Lindblom SD, Marcus MS, Fakra SC, Gilligan TM, Alford ER, Wangeline AL, Pilon-Smits EAH (2012) Selenium distribution and speciation in hyperaccumulator Astragalus bisulcatus and associated ecological partners. Plant Physiol 159:1834–1844

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Visioli G, D’Egidio S, Sanangelantoni AM (2015) The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy. Front Plant Sci 5:752

    Article  PubMed  PubMed Central  Google Scholar 

  • Wanek PL, Vance GF, Stahi PD (1999) Selenium uptake by plants: effects of soil steaming, root addition, and selenium augmentation. Commun Soil Sci Plant Anal 30(1–2):265–278

    Article  CAS  Google Scholar 

  • Wang B, Qui Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5):229–363

    Article  Google Scholar 

  • Wangeline AL, Valdez JR, Lindblom SD, Bowling KL, Reeves FB, Pilon-Smits EAH (2011) Selenium tolerance in rhizosphere fungi from Se hyperaccumulator and non-hyperaccumulator plants. Am J Bot 98:1139–1147

    Article  PubMed  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009a) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009b) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27(10):591–598

    Article  CAS  PubMed  Google Scholar 

  • Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits EAH, Banuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Forum Nutr 7(1):4199–4239

    CAS  Google Scholar 

  • Yasin M, El-Mehdawi AF, Anwar A, Pilon-Smits EAH, Faisal M (2015) Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.) – applications in phytoremediation and biofortification. Int J Phytoremediation 17:341–347

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Luo L, Yang K, Zhang S (2011) Influence of mycorrhizal inoculation on the accumulation and speciation of selenium in maize growing in selenite and selenate spiked soils. Pedobiologica- Int J Soil Biol 54:267–272

    CAS  Google Scholar 

  • Zayed AM, Terry N (1994) Selenium volatilization in roots and shoots: effects of shoot removal and sulfate level. J Plant Physiol 143(1):8–14

    Article  CAS  Google Scholar 

  • Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by pants. Planta 206:284–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge contributors to this project including the Earth Microbiome Project and a Nick Stavros graduate student fellowship from the Colorado State University Biology Department. I would also like to thank Erin Lapsansky and Michela Schiavon for providing insight and edits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alyssa T. Cochran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cochran, A.T. (2017). Selenium and the Plant Microbiome. In: Pilon-Smits, E., Winkel, L., Lin, ZQ. (eds) Selenium in plants. Plant Ecophysiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-56249-0_7

Download citation

Publish with us

Policies and ethics