Skip to main content

Biochemistry of Plant Selenium Uptake and Metabolism

  • Chapter
  • First Online:

Part of the book series: Plant Ecophysiology ((KLEC,volume 11))

Abstract

Selenium (Se) is a trace element indispensable for humans, animals and some microorganisms. For plants its essentiality has not yet been established, despite its responsibility for a number of beneficial effects in several plant species. Plants take up Se mainly as selenate and selenite, using root high-affinity membrane transporters that normally mediate the influx of sulfate and phosphate ions, respectively. Once inside cells, Se can access the sulfur (S) assimilation pathway and be incorporated into the Se-amino acids Se-cysteine (SeCys) and Se-methionine (SeMet). Studies with transgenics showed that some enzymes working in this pathway are rate limiting for Se uptake, tolerance and accumulation in plants. Selenium at high concentration is toxic for plants, both due to oxidative stress and because Se-amino acids are non-specifically incorporated into proteins, which lose their folding and function as a result. Therefore, plants have evolved different strategies to cope with Se toxicity. They usually involve the conversion of Se-amino acids into less harmful volatile compounds. Specifically, plants that do not accumulate Se at high levels produce dimethylselenide (DMSe) using SeMet as a precursor, while Se-hyperaccumulators, i.e. plants able to tolerate and accumulate significant amounts of Se in their tissues, generate dimethyldiselenide (DMDSe) starting from the amino acid SeCys. Selenium hyperaccumulators have additional mechanisms to prevent SeCys misincorporation into protein, like methylation of SeCys to methylselenocysteine (MeSeCys) via SeCys methyltransferase (SMT), and breaking down of SeCys into elemental Se and alanine. In this chapter we review the main mechanisms implied in Se acquisition, assimilation and detoxification in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alford ER, Lindblom SD, Pittarello M, Freeman JL, Fakra SC, Marcus MA, Broeckling C, Pilon-Smits EAH, Paschke MW (2014) Roles of rhizobial symbionts in selenium hyperaccumulation in Astragalus (Fabaceae). Amer J Bot 101:1895–1905

    Article  Google Scholar 

  • Anderson JW, Mcmahon PJ (2001) The role of glutathione in the uptake and metabolism of sulfur and selenium. In: Grill D, Tausz MM, de Kok LJ (eds) Significance of glutathione to plant adaptation to the environment, Plant ecophysiology, vol 2. Springer, Dordrecht, pp 57–99

    Chapter  Google Scholar 

  • Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS (2015) ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Front Plant Sci 6:210

    PubMed  PubMed Central  Google Scholar 

  • Bañuelos G, Terry N, Leduc D, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  PubMed  Google Scholar 

  • Bañuelos G, Leduc D, Pilon-Smits EAH, Terry N (2007) Transgenic indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  PubMed  Google Scholar 

  • Barberon M, Berthomieu P, Clairotte M, Shibagaki N, Davidian J, Gosti F (2008) Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2. New Phytol 180:608–619

    Article  CAS  PubMed  Google Scholar 

  • Birringer M, Pilawa S, Flohé L (2002) Trends in selenium biochemistry. Nat Prod Rep 19:693–718

    Article  CAS  PubMed  Google Scholar 

  • Bogdanova N, Hell R (1997) Cysteine synthesis in plants: protein-protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11:251–262

    Article  CAS  PubMed  Google Scholar 

  • Bohrer A-S, Kopriva S, Takahashi H (2015) Plastid-cytosol partitioning and integration of metabolic pathways for APS/PAPS biosynthesis in Arabidopsis thaliana. Front Plant Sci 5:1–4

    Google Scholar 

  • Bork C, Schwenn JD, Hell R (1998) Isolation and characterization of a gene for assimilatory sulfite reductase from Arabidopsis thaliana. Gene 212:147–153

    Article  CAS  PubMed  Google Scholar 

  • Brown TA, Shrift A (1982) Selenium: toxicity and tolerance in higher plants. Biol Rev 57:59–84

    Article  CAS  Google Scholar 

  • Buchner P (2004) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol 136:3396–3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabannes E, Buchner P, Broadley MR, Hawkesford MJ (2011) A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species. Plant Physiol 157:2227–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB (2012) SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana. Plant J 73:607–616

    Article  PubMed  Google Scholar 

  • Chin HW, Lindsay RC (1994) Mechanisms of formation of volatile sulfur compounds following the action of cysteine sulfoxide lyases. J Agric Food Chem 42:1529–1536

    Article  CAS  Google Scholar 

  • Cossins EA, Chen L (1997) Folates and one-carbon metabolism in plants and fungi. Phytochemistry 45:437–452

    Article  CAS  PubMed  Google Scholar 

  • de Souza MP, Pilon-Smits EA, Lytle CM, Hwang S, Tai J, Honma TS, Yeh L, Terry N (1998) Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol 117:1487–1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Eichel J, Gonzalez JC, Hotze M, Matthews RG, Schroder J (1995) Vitamin-B12-independent methionine synthase from a higher plant (Catharanthus roseus). Molecular characterization, regulation, heterologous expression, and enzyme properties. Eur J Biochem 230:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  CAS  PubMed  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1471–2229

    Article  Google Scholar 

  • Evans CS, Asher CJ, Johnson CM (1968) Isolation of dimethyl diselenide and other volatile selenium compounds from Astragalus racemosus (Pursh.) Aust J Biol Sci 21:13–20

    CAS  Google Scholar 

  • Fordyce FM (2012) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) Essentials of medical geology, 3rd edn. Springer, Dordrecht, pp 375–416

    Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra SC, Marcus MA, Mcgrath SP, Van Hoewyk D, Pilon-Smits EAH (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153:1630–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frommer WB, Hummel S, Riesmeier JW (1993) Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci U S A 90:5944–5948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garifullina GF, Owen JD, Lindblom SD, Tufan H, Pilon M, Pilon-Smits EAH (2003) Expression of a mouse selenocysteine lyase in Brassica juncea chloroplasts affects selenium tolerance and accumulation. Physiol Plant 118:538–544

    Article  CAS  Google Scholar 

  • Giovanelli J (1990) Regulatory aspects of cysteine and methionine synthesis. In: Rennenberg H et al (eds) Sulfur nutrition and sulfur assimilation in higher plants: fundamental environmental and agricultural aspects. SPB Academic Pub, The Hague

    Google Scholar 

  • Grant K, Carey NM, Mendoza M, Schulze J, Pilon M, Pilon-Smits EAH, Van Hoewyk D (2011) Adenosine 5’-phosphosulfate reductase (APR2) mutation in Arabidopsis implicates glutathione deficiency in selenate toxicity. Biochem J 438:325–335

    Article  CAS  PubMed  Google Scholar 

  • Griffiths G, Trueman L, Crowther T, Thomas B, Smith B (2002) Onions–a global benefit to health. Phytother Res 16:603–615

    Article  CAS  PubMed  Google Scholar 

  • Hanson A, Rivoal J, Paquet L, Gage DA (1994) Biosynthesis of 3-dimethylsulfoniopropionate in Wollastonia biflora (L.) DC. Evidence that S-methylmethionine is an intermediate. Plant Physiol 105:103–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkesford M, Davidian JC, Grignon C (1993) Sulphate/proton cotransport in plasma-membrane vesicles isolated from roots of Brassica napus L.: increased transport in membranes isolated from Sulphur-starved plants. Planta 190:297–304

    Article  CAS  Google Scholar 

  • Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210:199–207

    Article  CAS  Google Scholar 

  • Hsieh SH, Ganther HE (1975) Acid-volatile selenium formation catalyzed by glutathione reductase. Biochemist 14:1632–1636

    Article  CAS  Google Scholar 

  • Huysen T, Abdel-Ghany SE, Hale KL, Leduc D, Terry N, Pilon-Smits EAH (2003) Overexpression of cystathionine-γ-synthase enhances selenium volatilization in Brassica juncea. Planta 218:71–78

    Article  PubMed  Google Scholar 

  • Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic indian mustard overexpressing ATP sulfurylase or cystathionine-γ-synthase. Int J Theor Phys 6:111–118

    Google Scholar 

  • Jablonski PP, Anderson JW (1978) Light-dependent reduction of oxidized glutathione by ruptured chloroplasts. Plant Physiol 61:221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James F, Paquet L, Sparace SA, Gage DA, Hanson AD (1995) Evidence implicating dimethylsulfoniopropionaldehyde as an intermediate in dimethylsulfoniopropionate biosynthesis. Plant Physiol 108:1439–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jocelyn PC (1972) Biochemistry of the SH group; the occurrence, chemical properties, metabolism and biological function of thiols and disulphides. Academic Press, London/New York

    Google Scholar 

  • Kassis E, Cathala RNH, Fourcroy P, Berthomieu P, Terry N, Davidian JC (2007) Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiol 143:1231–1241

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MS, Haas FH, Samami AA, Gholami AM, Bauer A, Fellenberg K, Reichelt M, Hansch R, Mendel RR, Meyer AJ, Wirtz M, Hell R (2010) Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22:1216–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikkert J, Berkelaar E (2013) Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Contam Toxicol 65:458–465

    Article  CAS  PubMed  Google Scholar 

  • Kocsis MG (1998) Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora (L.) Evidence that S-methylmethionine and dimethylsulfoniopropylamine are intermediates. Plant Physiol 117:273–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G, Lill R, Van Montagu M (2001) A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lass B, Ullrich-Eberius CI (1984) Evidence for proton/sulfate cotransport and its kinetics in Lemna gibba G1. Planta 161:53–60

    Article  CAS  PubMed  Google Scholar 

  • Lazard M, Blanquet S, Fisicaro P, Labarraque G, Plateau P (2010) Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters. J Biol Chem 285:32029–32037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leduc DL, Abdelsamie M, Móntes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in indian mustard. Environ Pollut 144:70–76

    Article  CAS  PubMed  Google Scholar 

  • Leustek T (1994) Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. Plant Physiol 105:897–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HF, Mcgrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  PubMed  Google Scholar 

  • Lindblom SD, Valdez-Barillas JR, Fakra SC, Marcus MA, Wangeline AL, Pilon-Smits EAH (2013) Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot 88:33–42

    Article  CAS  Google Scholar 

  • Lyi SM, Zhou X, Kochian LV, Li L (2007) Biochemical and molecular characterization of the homocysteine S-methyltransferase from broccoli (Brassica oleracea var. italica). Phytochemistry 68:1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Mason TG, Blunden G (1989) Quaternary ammonium and tertiary sulphonium compounds of algal origin as alleviators of osmotic stress. Bot Mar 32:313–316

    Article  CAS  Google Scholar 

  • McCluskey TJ, Scarf AR, Anderson JW (1986) Enzyme catalysed α,β-elimination of selenocystathionine and selenocystine and their Sulphur isologues by plant extracts. Phytochemistry 25:2063–2068

    Article  CAS  Google Scholar 

  • McConnell KP, Portman OW (1952) Toxicity of dimethyl selenide in the rat and mouse. Exp Biol Med 79:230–231

    Article  CAS  Google Scholar 

  • Meija J, Montes-Bayón M, Le Duc D, Terry N, Caruso JA (2002) Simultaneous monitoring of volatile selenium and sulfur species from Se accumulating plants (wild type and genetically modified) by GC/MS and GC/ICPMS using solid-phase microextraction for sample introduction. Anal Chem 74:5837–5844

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen RL, Page AL, Bingham FT (1989) Factors affecting selenium accumulation by agricultural crops. In: Jacobs L (ed) Selenium in agriculture and the environment. Soil Science Society of America & American Society of Agronomy, Madison, pp 65–94

    Google Scholar 

  • Mudd SH, Datko AH (1990) The S-methylmethionine cycle in Lemna paucicostata. Plant Physiol 93:623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhierl B, Bock A (1996) On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus. Eur J Biochem 239:235–238

    Article  CAS  PubMed  Google Scholar 

  • Neuhierl B, Thanbichler M, Lottspeich F, Bock A (1999) A family of S-methylmethionine-dependent thiol/selenol methyltransferases: role in selenium tolerance and evolutionary relation. J Biol Chem 274:5407–5414

    Article  CAS  PubMed  Google Scholar 

  • Ng B, Anderson JW (1979) Light-dependent incorporation of selenite and sulphite into selenocysteine and cysteine by isolated pea chloroplasts. Phytochemistry 18:573–580

    Article  CAS  Google Scholar 

  • Paquet L, Lafontaine PJ, Saini HS, James F, Hanson AD (1995) Évidence en faveur de la présence du 3-diméthylsulfoniopropionate chez une large gamme d’angiospermes. Can J Bot 73:1889–1896

    Article  CAS  Google Scholar 

  • Petersen M, Van Der Straeten D, Bauw G (1995) Full-length cDNA clone from Coleus blumei (accession no. Z49150) with high similarity to cobalamin-independent methionine synthase. Plant Physiol 109:338

    Google Scholar 

  • Pickering IJ (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EAH (2012) Plant selenium metabolism. In: Wong M (ed) Environmental contamination: health risks and ecological restoration. CRC Press, Boca Raton, pp 295–312

    Chapter  Google Scholar 

  • Pilon-Smits EAH, Le Duc D (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, De Souza MP, Hong G, Amini A, Bravo RC, Payabyab SB, Terry N (1999) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual 28:1011–1018

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Garifullina GF, Abdel-Ghany SE, Kato SI, Mihara H, Hale KL, Burkhead JL, Esaki N, Kurihara T, Pilon M (2002) Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. Plant Physiol 130:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price NC, Stevens L (1999) Fundamentals of enzymology: the cell and molecular biology of catalytic proteins. Oxford Press, Oxford

    Google Scholar 

  • Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A 95:7805–7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuveny Z (1977) Derepression of ATP sulfurylase by the sulfate analogs molybdate and selenate in cultured tobacco cells. Proc Natl Acad Sci U S A 74:619–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136:2443–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavon M, Pilon M, Malagoli M, Pilon-Smits EAH (2015) Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation: a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Front Plant Sci 6:1–13

    Article  Google Scholar 

  • Setya A, Murillo M, Leustek T (1996) Sulfate reduction in higher plants: molecular evidence for a novel 5′-adenylylsulfate reductase. Proc Natl Acad Sci U S A 93:13383–13388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibagaki N, Rose A, Mcdermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486

    Article  CAS  PubMed  Google Scholar 

  • Sors TG, Ellis DR, Nam Na G, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005a) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    Article  CAS  PubMed  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005b) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  CAS  PubMed  Google Scholar 

  • Sors TG, Martin CP, Salt DE (2009) Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J 59:110–122

    Article  CAS  PubMed  Google Scholar 

  • Stadtman T (1990) Selenium biochemistry. Annu Rev Biochem 59:111–127

    Article  CAS  PubMed  Google Scholar 

  • Suter M, Von Ballmoos P, Kopriva S, Den Camp RO, Schaller J, Kuhlemeier C, Schurmann P, Brunold C (2000) Adenosine 5′-phosphosulfate sulfotransferase and adenosine 5′-phosphosulfate reductase are identical enzymes. J Biol Chem 275:930–936

    Article  CAS  PubMed  Google Scholar 

  • Tagmount A (2002) An essential role of S-adenosyl-L-methionine:L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-selenium-methionine, the precursor of volatile selenium. Plant Physiol 130:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Kazuki S (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    Article  CAS  PubMed  Google Scholar 

  • Terry N, Zayed MA, De Souza MP, Tarun AS (2007) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  Google Scholar 

  • Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 112:965–972

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S, Ishiyama K, Inoue E, Pilon M, Takahashi H, Pilon-Smits EAH (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol 139:1518–1528

    Article  PubMed  PubMed Central  Google Scholar 

  • White PJ (2015) Selenium accumulation by plants. Ann Bot 117(2):217–235

    PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR, Bowen HC, Johnson SE (2007) Selenium and its relationship with sulfur. In: Hawkesford MK, Kok D, Luit J (eds) Plant ecophysiology, Sulfur in plants: an ecological perspective, vol 6. Springer, Dordrecht, pp 225–252

    Google Scholar 

  • Wilber CG (1980) Toxicology of selenium: a review. Clin Toxicol 17:171–230

    Article  CAS  PubMed  Google Scholar 

  • Williams CH (1976) 3 Flavin-containing dehydrogenases. In: Boyer P (ed) The enzymes, vol 13. Elsevier, Dordrecht, pp 89–173

    Google Scholar 

  • Wirtz M, Berkowitz O, Droux M, Hell R (2001) The cysteine synthase complex from plants. Eur J Biochem 268:686–693

    Article  CAS  PubMed  Google Scholar 

  • Yarmolinsky D, Brychkova G, Fluhr R, Sagi M (2012) Sulfite reductase protects plants against sulfite toxicity. Plant Physiol 161:725–743

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye H, Garifullina GF, Abdel-Ghany SE, Lihong Z, Pilon-Smits EAH, Pilon M (2005) The chloroplast NifS-like protein of Arabidopsis thaliana is required for iron – sulfur cluster formation in ferredoxin. Planta 220:602–608

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465–473

    Article  CAS  PubMed  Google Scholar 

  • Zayed AM, Terry N (1994) Selenium volatilization by plants. Plant Physiol 143:8–14

    Article  CAS  Google Scholar 

  • Zayed AM, Mel Lytle C, Terry N (1998) Accumulation and volatilization of different species of selenium by plants. Planta 206:284–292

    Article  CAS  Google Scholar 

  • Zuber H, Davidian JC, Wirtz M, Hell R, Belghazi M, Thompson R, Gallardo K (2010) Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization. BMC Plant Biol 10:78

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zackary Guignardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Guignardi, Z., Schiavon, M. (2017). Biochemistry of Plant Selenium Uptake and Metabolism. In: Pilon-Smits, E., Winkel, L., Lin, ZQ. (eds) Selenium in plants. Plant Ecophysiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-56249-0_2

Download citation

Publish with us

Policies and ethics