Skip to main content

Evolutionary Aspects of Plant Selenium Accumulation

  • Chapter
  • First Online:
Selenium in plants

Part of the book series: Plant Ecophysiology ((KLEC,volume 11))

Abstract

Essential selenium (Se) metabolism, as found in some photosynthetic cyanobacteria and algae, appears to have been lost in plants. Although not essential, Se is readily taken up by plants due to its similarity to sulfur (S), and typically plant accumulation of Se parallels that of S. In contrast, some plant species appear to preferentially take up Se over S, translocate and sequester Se and S independently, and accumulate Se to levels above 0.1% of dry matter. This so-called Se hyperaccumulation trait occurs in different plant lineages and likely has evolved independently multiple times. The variation in plant Se accumulation, particularly the phenomenon of hyperaccumulation, leads to some intriguing evolutionary questions: What may be the physiological and ecological benefits and constraints of Se hyperaccumulation? What sequence of events led to Se hyperaccumulation? Did tolerance and accumulation evolve simultaneously or sequentially, and what were the physiological, biochemical and genetic steps involved? These questions are explored in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad R et al (2016) Selenium (Se) improves drought tolerance in crop plants – a myth or fact? J Sci Food Agric 96(2):372–380. Available at: http://doi.wiley.com/10.1002/jsfa.7231

    Article  CAS  PubMed  Google Scholar 

  • Barberon M, Berthomieu P, Clairotte M, Shibagaki N, Davidian JC, Gosti F (2008) Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1; 1 and SULTR1; 2. New Phytol 180(3):608–619

    Article  CAS  PubMed  Google Scholar 

  • Barillas JRV, Quinn CF, Freeman JL, Lindblom SD, Fakra SC, Marcus MA, Gilligan TM, Alford ÉR, Wangeline AL, Pilon-Smits EA (2012) Selenium distribution and speciation in the hyperaccumulator Astragalus bisulcatus and associated ecological partners. Plant Physiol 159(4):1834–1844

    Article  CAS  Google Scholar 

  • Beath OA, Gilbert CS, Eppson HF (1940) The use of indicator plants in locating seleniferous areas in western United States. III. Further studies. Am J Bot 27:564–573

    Article  CAS  Google Scholar 

  • Bohrer AS, Yoshimoto N, Sekiguchi A, Rykulski N, Saito K, Takahashi H (2015) Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana. Front Plant Sci 5:750

    PubMed  PubMed Central  Google Scholar 

  • Boyd RS (2012) Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci 195:88–95

    Article  CAS  PubMed  Google Scholar 

  • Boyd RS, Martens SN (1992) The raison d'être for metal hyperaccumulation by plants. In: AJM B, Proctor J, Reeves RD (eds) The vegetation of ultramafic (Serpentine) soils. Intercept, Andover, pp 279–289

    Google Scholar 

  • Boyd RS, Martens SN (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8(1):1–7

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Brown TA, Shrift A (1982) Selenium: toxicity and tolerance in higher plants. Biol Rev 57(1):59–84

    Article  CAS  Google Scholar 

  • Cabannes E, Buchner P, Broadley MR, Hawkesford MJ (2011) A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species. Plant Physiol 157:2227–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakir O, Turgut-Kara N, Ari S, Zhang B (2015) De novo transcriptome assembly and comparative analysis elucidate complicated mechanism regulating Astragalus chrysochlorus response to selenium stimuli. PLoS One 10(10):1–16

    Article  Google Scholar 

  • Cappa JJ, Pilon-Smits EAH (2014) Evolutionary aspects of elemental hyperaccumulation. Planta 239:267–275

    Article  CAS  PubMed  Google Scholar 

  • Cappa JJ, Cappa PJ, El Mehdawi AF, McAleer JM, Simmons MP, Pilon-Smits EAH (2014) Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): a field survey and common-garden experiment. Am J Bot 101:830–839

    Article  PubMed  Google Scholar 

  • Cappa JJ, Yetter C, Fakra S, Cappa PJ, DeTar R, Landes C, Pilon-Smits EAH, Simmons MP (2015) Evolution of selenium hyperaccumulation in Stanleya (Brassicaceae) as inferred from phylogeny, physiology and X-ray microprobe analysis. New Phytol 205:583–595

    Article  CAS  PubMed  Google Scholar 

  • Craciun A, Meyer C-L, Chen J, Roosens N, De Groodt R, Hilson P, Verbruggen N (2012) Variation in HMA4 copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. J Exp Bot 63:4179–4189

    Article  CAS  PubMed  Google Scholar 

  • DeTar R, Alford E, Pilon-Smits EAH (2015) Molybdenum accumulation, tolerance and molybdenum–selenium–sulfur interactions in Astragalus selenium hyperaccumulator and nonaccumulator species. J Plant Physiol 183:32–40

    Article  CAS  PubMed  Google Scholar 

  • Dhillon KS, Dhillon SK (2001) Distribution and management of seleniferous soils. Adv Agron 79:119–184

    Article  Google Scholar 

  • El Mehdawi AF, Pilon-Smits EAH (2012) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14(1):1–10

    Article  PubMed  Google Scholar 

  • El Mehdawi AF, Quinn CF, Pilon-Smits EAH (2011) Effects of selenium hyperaccumulation on plant-plant interactions: evidence for elemental allelopathy? New Phytol 191(1):120–131

    Article  PubMed  Google Scholar 

  • El Mehdawi AF, Paschke MW, Pilon-Smits EAH (2015) Symphyotrichum ericoides populations from seleniferous and nonseleniferous soil display striking variation in selenium accumulation. New Phytol 206(1):231–242

    Article  PubMed  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Feist LJ, Parker DR (2001) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol 149:61–69

    Article  CAS  Google Scholar 

  • Freeman JL (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142(1):124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Zhang LH, Marcus M, Fakra S, McGrath SP, Pilon-Smits EAH (2006a) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Quinn CF, Marcus MA, Fakra S, Pilon-Smits EA (2006b) Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense. Curr Biol 16(22):2181–2192

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Lindblom SD, Quinn CF, Fakra S, Marcus MA, Pilon-Smits EA (2007) Selenium accumulation protects plants from herbivory by Orthoptera via toxicity and deterrence. New Phytol 175(3):490–500

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra SF, Marcus MA, McGrath SP, Van Hoewyk D, Pilon-Smits EAH (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153:1630–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Quinn CF, Lindblom SD, Klamper EM, Pilon-Smits EA (2009) Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats. Am J Bot 96(6):1075–1085

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Marcus MA, Fakra SC, Devonshire J, McGrath SP, Quinn CF, Pilon-Smits EA (2012) Selenium hyperaccumulator plants Stanleya pinnata and Astragalus bisulcatus are colonized by Se-resistant, Se-excluding wasp and beetle seed herbivores. PLoS One 7(12):e50516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EA (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173(3):517–525

    Article  CAS  PubMed  Google Scholar 

  • Galeas ML, Klamper EM, Bennett LE, Freeman JL, Kondratieff BC, Quinn CF, Pilon-Smits EA (2008) Selenium hyperaccumulation reduces plant arthropod loads in the field. New Phytol 177(3):715–724

    Article  CAS  PubMed  Google Scholar 

  • Han D, Li X, Xiong S, Tu S, Chen Z, Li J, Xie Z (2013) Selenium uptake, speciation and stressed response of Nicotiana tabacum L. Environ Exp Bot 95:6–14

    Article  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  CAS  PubMed  Google Scholar 

  • Hanson B, Garifullina GF, Lindblom SD, Wangeline A, Ackley A, Kramer K, Norton AP, Lawrence CB, Pilon-Smits EA (2003) Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol 159(2):461–469

    Article  CAS  Google Scholar 

  • Hanson B, Lindblom SD, Loeffler ML, Pilon-Smits EA (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162(3):655–662

    Article  CAS  Google Scholar 

  • Harris J, Schneberg KA, Pilon-Smits EAH (2013) Sulfur - selenium - molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta 239:479–491

    Article  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143(3):1758–1776

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143(3):1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias AH, Pendias H, CRC Press (2001) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Kiefer M, Schmickl R, German DA, Mandáková T, Lysak MA, Al-Shehbaz IA, Franzke A, Mummenhoff K, Stamatakis A, Koch MA (2014) BrassiBase: introduction to a novel knowledge database on Brassicaceae evolution. Plant Cell Physiol 55(1):e3–e3

    Article  PubMed  Google Scholar 

  • Koch, M.A., Kiefer, M., German, D.A., Al-Shehbaz, I.A., Franzke, A., Mummenhoff, K. and Schmickl, R., 2012. BrassiBase: tools and biological resources to study characters and traits in the Brassicaceae—version 1.1. Taxon, 61(5), pp.1001–1009.

    Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang CY, Tagmount A, Neuhierl B, Böck A (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135(1):377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindblom SD, Valdez-Barillas JR, Fakra SC, Marcus MA, Wangeline AL, Pilon-Smits EAH (2013) Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot 88:33–42

    Article  CAS  Google Scholar 

  • Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol 138:409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc R Soc Lond B Biol Sci 266(1434):2175–2179

    Article  CAS  Google Scholar 

  • Nawaz F, Ashraf MY, Ahmad R, Waraich EA, Shabbir RN, Bukhari MA (2015) Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem 175:350–357

    Article  CAS  PubMed  Google Scholar 

  • Neuhierl B, Böck A (1996) On the mechanism of selenium tolerance in selenium-accumulating plants: purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisulcatus. Eur J Biochem 239:235–238

    Article  CAS  PubMed  Google Scholar 

  • Peterson PJ, Butler GW (1962) The uptake and assimilation of selenite by higher plants. Aust J Biol Sci 24(2):175–178

    Google Scholar 

  • Peterson PJ, Butler GW (1971) The occurrence of selenocystathionine in Morinda reticulata benth., a toxic seleniferous plant. Aust J Biol Sci 24(1):175–178

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119(1):123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prins CN, Hantzis LJ, Quinn CF, Pilon-Smits EAH (2011) Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata. J Exp Bot 62:5633–5640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn CF, Freeman JL, Galeas ML, Klamper EM, Pilon-Smits EA (2008) The role of selenium in protecting plants against prairie dog herbivory: implications for the evolution of selenium hyperaccumulation. Oecologia 155(2):267–275

    Article  PubMed  Google Scholar 

  • Quinn CF, Freeman JL, Reynolds RJ, Cappa JJ, Fakra SC, Marcus MA, Lindblom SD, Quinn EK, Bennett LE, Pilon-Smits EA (2010) Selenium hyperaccumulation offers protection from cell disruptor herbivores. BMC Ecol 10(1):1

    Article  Google Scholar 

  • Quinn CF, Prins CN, Freeman JL, Gross AM, Hantzis LJ, Reynolds RJB, Yang SI, Covey PA, Bañuelos GS, Pickering IJ, Fakra SC, Marcus MA, Arathi HS, Pilon-Smits EAH (2011a) Selenium accumulation in flowers and its effects on pollination. New Phytol 192:727–737

    Article  CAS  PubMed  Google Scholar 

  • Quinn CF, Wyant KA, Wangeline AL, Shulman J, Galeas ML, Valdez JR, Self JR, Paschke MW, Pilon-Smits EA (2011b) Enhanced decomposition of selenium hyperaccumulator litter in a seleniferous habitat—evidence for specialist decomposers? Plant Soil 341(1–2):51–61

    Article  CAS  Google Scholar 

  • Reeves RD, Brooks RR, Macfarlane RM (1981) Nickel uptake by Californian Streptanthus and Caulanthus with particula reference to the hyperaccumulator S. polygaloides gray (Brassicaceae). Am J Bot 68(5):708

    Article  CAS  Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium. Geobotany, biochemistry, toxicity and nutrition. Annu Rev Plant Physiol 20:475

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49(1):643–668

    Article  CAS  Google Scholar 

  • Schiavon M, Pilon M, Malagoli M, Pilon-Smits EA (2015) Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation—a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Front Plant Sci 6:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005a) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42(6):785–797

    Article  CAS  PubMed  Google Scholar 

  • Sors T, Ellis D, Salt D (2005b) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res:373–389

    Google Scholar 

  • Sors TG, Martin CP, Salt DE (2009) Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J Cell Mol Biol 59(1):110–122

    Article  CAS  Google Scholar 

  • Stevens PF (2001 onwards) Angiosperm Phylogeny website. version 12, July 2012 (and more or less continuously updated since). http://www.mobot.org/MOBOT/research/APweb/

  • Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Biol 51(1):401–432

    Article  CAS  Google Scholar 

  • Trumble JT, Kund GS, White KK (1998) Influence of form and quantity of selenium on the development and survival of an insect herbivore. Environ Pollut 101(2):175–182

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Zambrano MC, Kaskie M, Ebbs S, Kochian LV, Ma JF (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66:852–862

    Article  CAS  PubMed  Google Scholar 

  • Urbatsch LE, Roberts RP, Karaman V (2003) Phylogenetic evaluation of Xylothamia, Gundlachia, and related genera (Asteraceae, Astereae) based on ETS and ITS nrDNA sequence data. Am J Bot 90:634–649

    Article  CAS  PubMed  Google Scholar 

  • Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 112(6):965–972

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EA (2008) Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132(2):236–253

    PubMed  Google Scholar 

  • Vickerman D, Trumble J (1999) Feeding preferences of Spodoptera exigua in response to form and concentration of selenium. Arch Insect Biochem Physiol 42(1):64–73

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67

    PubMed  PubMed Central  Google Scholar 

  • White PJ (2016) Selenium accumulation by plants. Ann Bot 117:mcv180

    Google Scholar 

  • Winkel LH, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients 7(6):4199–4239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Yin X, Bañuelos GS, Lin ZQ, Zhu Z, Liu Y, Yuan L, Li M (2015) Effect of selenium on control of postharvest gray mold of tomato fruit and the possible mechanisms involved. Front Microbiol 6:1441

    PubMed  Google Scholar 

  • Wyoming Agricultural Experiment Station, Beath OA, Knight SH (1937) Occurrence of Selenium and Seleniferous vegetation in Wyoming

    Google Scholar 

  • Yao X, Chu J, Wang G (2009) Effects of selenium on wheat seedlings under drought stress. Biol Trace Elem Res 130(3):283–290

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Zhu Y, Lin ZQ, Banuelos G, Li W, Yin X (2013) A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China. PLoS One 8(6):e65615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206(2):284–292

    Article  CAS  Google Scholar 

  • Zhang LH, Abdel-Ghany SE, Freeman JL, Ackley AR, Schiavon M, Pilon-Smits EA (2006) Investigation of selenium tolerance mechanisms in Arabidopsis thaliana. Physiol Plant 128(2):212–223

    Article  CAS  Google Scholar 

  • Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2014) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201(4):1183–1191

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. H. Pilon-Smits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Reynolds, R.J.B., Cappa, J.J., Pilon-Smits, E.A.H. (2017). Evolutionary Aspects of Plant Selenium Accumulation. In: Pilon-Smits, E., Winkel, L., Lin, ZQ. (eds) Selenium in plants. Plant Ecophysiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-56249-0_12

Download citation

Publish with us

Policies and ethics