Skip to main content

QM Automata: A New Class of Restricted Quantum Membrane Automata

  • Conference paper
  • First Online:
GeNeDis 2016

Abstract

The term “Unconventional Computing” describes the use of non-standard methods and models in computing. It is a recently established field, with many interesting and promising results. In this work we combine notions from quantum computing with aspects of membrane computing to define what we call QM automata. Specifically, we introduce a variant of quantum membrane automata that operate in accordance with the principles of quantum computing. We explore the functionality and capabilities of the QM automata through indicative examples. Finally we suggest future directions for research on QM automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calude, C. 2015. Unconventional computing: A brief subjective history. Technical Report, Department of Computer Science, The University of Auckland.

    Google Scholar 

  2. Păun, G. 2000. Computing with membranes. Journal of Computer and System Sciences 61(1): 108–143.

    Article  Google Scholar 

  3. Csuhaj-Varjú, E., and G. Vaszil. 2003. P automata or purely communicating accepting P systems. In Membrane Computing, 219–233. New York: Springer.

    Chapter  Google Scholar 

  4. Csuhaj-Varjú, E., and G. Vaszil. 2013. On the power of P automata. In Unconventional Computation and Natural Computation, 55–66. Berlin: Springer.

    Chapter  Google Scholar 

  5. Feynman, R.P. 1982. Simulating physics with computers. International Journal of Theoretical Physics 21(6): 467–488.

    Article  Google Scholar 

  6. Bernstein, E., and U. Vazirani. 1997. Quantum complexity theory. SIAM Journal on Computing 26(5): 1411–1473.

    Article  Google Scholar 

  7. Fortnow, L. 2003. One complexity theorist’s view of quantum computing. Theoretical Computer Science 292(3): 597–610.

    Article  Google Scholar 

  8. Barbuti, R., A. Maggiolo-Schettini, P. Milazzo, G. Pardini, and L. Tesei. 2011. Spatial P systems. Natural Computing 10(1): 3–16.

    Article  Google Scholar 

  9. Martın-Vide, C., G. Păun, J. Pazos, and A. Rodrıguez-Patón. 2003. Tissue P systems. Theoretical Computer Science 296(2): 295–326.

    Article  Google Scholar 

  10. Păun, G., G. Rozenberg, and A. Salomaa. 2010. The Oxford Handbook of Membrane Computing. Oxford: Oxford University Press.

    Book  Google Scholar 

  11. Aman, B., and G. Ciobanu. 2011. Mobility in Process Calculi and Natural Computing. Berlin: Springer Science & Business Media.

    Book  Google Scholar 

  12. Păun, G., M.J. Pérez-Jiménez, et al. 2012. Languages and P systems: Recent developments. Computer Science 20(2): 59.

    Google Scholar 

  13. Csuhaj-Varjú, E. 2010. P automata: Concepts, results, and new aspects. In Membrane Computing, 1–15. Berlin: Springer.

    Google Scholar 

  14. Freund, R., and M. Oswald. 2002. A short note on analysing P systems with antiport rules. Bulletin of the EATCS 78: 231–236.

    Google Scholar 

  15. Giannakis, K., and T. Andronikos. 2017. Membrane automata for modeling biomolecular processes. Natural Computing 16: 151–163. doi:10.1007/s11047-015-9518-1. http://dx.doi.org/10.1007/s11047-015-9518-1.

  16. Giannakis, K., and T. Andronikos. 2015. Mitochondrial fusion through membrane automata. In Advances in Experimental Medicine and Biology, GeNeDis 2014, eds. P. Vlamos, and A. Alexiou vol. 820, 163–172. Berlin: Springer International Publishing.

    Google Scholar 

  17. Giannakis, K., C. Papalitsas, and T. Andronikos. 2015. Quantum automata for infinite periodic words. In 2015 6th International Conference on Information, Intelligence, Systems and Application (IISA), 1–6. New York: IEEE.

    Google Scholar 

  18. Hirvensalo, M. 2011. Quantum automata theory–a review. In Algebraic Foundations in Computer Science, 146–167. Berlin: Springer.

    Chapter  Google Scholar 

  19. Bernstein, E., and U. Vazirani. 1993. Quantum complexity theory. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, 11–20. New York: ACM.

    Google Scholar 

  20. Leporati, A., D. Pescini, and C. Zandron. 2004. Quantum energy–based P systems. In: Proceedings of the First Brainstorming Workshop on Uncertainty in Membrane Computing, 145–168.

    Google Scholar 

  21. Barenco, A., D. Deutsch, A. Ekert, and R. Jozsa. 1995. Conditional quantum dynamics and logic gates. Physical Review Letters 74(20): 4083

    Article  CAS  PubMed  Google Scholar 

  22. Leporati, A., G. Mauri, and C. Zandron. 2005. Quantum sequential P systems with unit rules and energy assigned to membranes. In International Workshop on Membrane Computing, 310–325. Berlin: Springer.

    Google Scholar 

  23. Leporati, A. 2007. (UREM) P systems with a quantum-like behavior: background, definition, and computational power. In International Workshop on Membrane Computing, 32–53. Berlin: Springer.

    Chapter  Google Scholar 

  24. Aaronson, S. 2005. Quantum computing, postselection, and probabilistic polynomial-time. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 461, 3473–3482. London: The Royal Society.

    Google Scholar 

  25. Giannakis, K., C. Papalitsas, K. Kastampolidou, A. Singh, and T. Andronikos. 2015. Dominant strategies of quantum games on quantum periodic automata. Computation 3(4): 586–599.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Giannakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Giannakis, K., Singh, A., Kastampolidou, K., Papalitsas, C., Andronikos, T. (2017). QM Automata: A New Class of Restricted Quantum Membrane Automata. In: Vlamos, P. (eds) GeNeDis 2016. Advances in Experimental Medicine and Biology, vol 988. Springer, Cham. https://doi.org/10.1007/978-3-319-56246-9_15

Download citation

Publish with us

Policies and ethics