Skip to main content

Tribological Approaches for the Pedestrian Safety Measurements and Assessments

  • Chapter
  • First Online:
  • 894 Accesses

Abstract

To effectively measure and assess slip resistance properties, it is crucial to fully understand the fundamental principles and underlying mechanisms of frictional behaviours and related tribo-physical characteristics that affect slip resistance performance between the walkway surfaces and footwear . Solid knowledge and comprehensive understanding of such causes and triggering factors would permit to make an improved analysis of slip resistance properties that contribute to or impede pedestrian fall safety and provide further reliable analyses and interpretations of measured results for slip resistance performance .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abreu, A. C., Tavares, R. R., Borges, A., Mergulhão, F., & Simões, M. (2013). Current and emergent strategies for disinfection of hospital environments. Journal of Antimicrobial Chemotherapy, 68(12), 2718–2732.

    Article  Google Scholar 

  • Andres, R. O., & Chaffin, D. B. (1985). Ergonomic analysis of slip-resistance measurement devices. Ergonomics, 28(7), 1065–1080.

    Article  Google Scholar 

  • Aschan, C., Hirvonen, M., Mannelin, T., & Rajamäki, E. (2005). Development and validation of a novel portable slip simulator. Applied Ergonomics, 36(5), 585–593.

    Article  Google Scholar 

  • Barry, B., & Milburn, P. (2013). Tribology, friction and traction: understanding shoe-surface interaction. Footwear Science, 5(3), 137–145.

    Google Scholar 

  • Beschorner, K. E. (2008). Development of computational model for shoe-floor-contaminant friction. PhD dissertation, Swanson School of Engineering, University of Pittsburgh, USA.

    Google Scholar 

  • Beschorner, K. E., Lovell, M., Higgs, C. F., III, & Redfern, M. S. (2009). Modeling mixed-lubrication of a shoe-floor interface applied to a pin-on-disk apparatus. Tribology Transactions, 52(4), 560–568.

    Article  Google Scholar 

  • Bhushan, B., Wyant, J. C., & Meiling, J. (1988). A new three-dimensional non-contact digital optical profiler. Wear, 122(3), 301–312.

    Google Scholar 

  • Brady, R. A., Pavol, M. J., Owings, T. M., & Grabiner, M. D. (2000). Foot displacement but not velocity predicts the outcome of a slip induced in young subjects whilst walking. Journal of Biomechanics, 33(7), 803–808.

    Article  Google Scholar 

  • Braun, R., & Roemer, D. (1974). Influence of waxes on the static and dynamic friction. Soap/Cosmetics/Chemical Specialties, December, pp. 60–72.

    Google Scholar 

  • Bring, C. (1982). Testing of slipperiness. Document D5. Stockholm, Sweden: The National Swedish Council for Building Research.

    Google Scholar 

  • Cement & Concrete Association of Australia Offices (C&CAAO). (2003). Slip resistance of residential concrete paving surfaces. July 1–8. Available from: http://59.167.233.142/publications/pdf/profSlip.pdf.

  • Chaffin, D. B., Woldstad, J. C., & Trujillo, A. (1992). Floor/shoe slip resistance measurement. J Am Indust Hyg Assoc, 53(5), 283–289.

    Article  Google Scholar 

  • Cham, R., & Redfern, M. S. (2002). Heel contact dynamics during slip events on level and inclined surfaces. Safety Science, 40(7–8), 559–576.

    Article  Google Scholar 

  • Chang, W. R. (1998). The effects of surface roughness on dynamic friction between neolite and quarry. Safety Science, 29(2), 89–105.

    Article  Google Scholar 

  • Chang, W. R. (1999). The effects of surface roughness on the measurement of slip resistance. International Journal of Industrial Ergonomics, 24(3), 299–313.

    Article  Google Scholar 

  • Chang, W. R. (2000a). The effect of filtering processes on surface roughness parameters and their correlation with the measured friction, Part II: Porcelain tiles. Safety Science, 36(1), 35–47.

    Google Scholar 

  • Chang, W. R. (2000b). The effects of surface roughness and contaminants on the dynamic friction between porcelain tile and vulcanized rubber. in Proceeding of the 14th Triennial Congress of the International Ergonomics Association, IEA 2000/HFES 2000, August, San Diego, California, USA, No. 4, pp. 494–497.

    Google Scholar 

  • Chang, W. R., & Matz, S. (2000). The effect of filtering processes on surface roughness parameters and their correlation with the measured friction, Part I: Quarry tiles. Safety Science, 36(1), 19–33.

    Article  Google Scholar 

  • Chang, W. R., & Matz, S. (2001). The slip resistance of common footwear materials measured with two slipmeters. Applied Ergonomics, 32(6), 549–558.

    Article  Google Scholar 

  • Chang, W. R., Cotnam, J. P., & Matz, S. (2003). Field evaluation of two commonly used slipmeters. Applied Ergonomics, 34(1), 51–60.

    Article  Google Scholar 

  • Chang, W. R., Grönqvist, R., Leclercq, S., Myung, R., Makkonen, L., Strandberg, L., et al. (2001). The role of friction in the measurement of slipperiness, Part 1: Friction mechanisms and definition of test conditions. Ergonomics, 44(13), 1217–1232.

    Article  Google Scholar 

  • Culling, C. F. A. (1974). Modern microscopy, elementary theory and practice. London: Butterworth.

    Google Scholar 

  • Grönqvist, R. (1995). Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors. Ergonomics, 38(2), 224–241.

    Article  Google Scholar 

  • Grönqvist, R., Hirvonen, M., & Tohv, A. (1999). Evaluation of three portable floor slipperiness testers. International Journal of Industrial Ergonomics, 25(1), 85–89.

    Article  Google Scholar 

  • Grönqvist, R., Hirvonen, M., & Skytta, E. (1992). Countermeasures against floor slipperiness in the food industry. in S. Kumar (Ed.), Advances in Industrial Ergonomics and Safety IV (pp. 989–995). Taylor and Francis.

    Google Scholar 

  • Grönqvist, R., Roine, J., Järvinen, E., Korhonen, E., & Rahikainen, A. (1990). Slip resistance versus surface roughness of deck and other surfaces in ships. Journal of Occupational Accidents, 13, 291–302.

    Article  Google Scholar 

  • Hanson, J. P., Redfern, M. S., & Mazumdar, M. (1999). Predicting slips and falls considering required and available friction. Ergonomics, 42(12), 1619–1633.

    Article  Google Scholar 

  • Harris, G. W., & Shaw, S. R. (1988). Slip resistance of floors: Users’ opinions, Tortus instrument readings and roughness measurement. Journal of Occupational Accidents, 9(4), 287–298.

    Article  Google Scholar 

  • Hillmann, W., Kranz, O., & Eckolt, K. (1984). Reliability of roughness measurements using contact stylus instruments with particular reference to results of recent research at the physikalisch-technique bundesanstalt. Wear, 97(1), 27–43.

    Article  Google Scholar 

  • Hoang, K., Stevenson, M. G., & Wilgoss, R. A. (1985). Measurement of dynamic friction between shoe soles and walkway surfaces. In Proceedings of the 22nd Annual Conference of the Ergonomics Society of ANZ, Toowoomba, December, pp. 265–271.

    Google Scholar 

  • Hook, G. R., & Odeyale, C. O. (1989). Confocal scanning fluorescence microscopy: A new method for phagocytosis research. Journal of Leukocyte Biology, 45(4), 277–282.

    Google Scholar 

  • Hren, J. J., Goldstein, J. I., & Joy, D. C. (1979). Introduction to analytical electron microscopy. New York: Plenum Press.

    Book  Google Scholar 

  • Hunter, R. N. (1930, August). A method of measuring frictional coefficients of walkway materials. National Bureau of Standards Journal of Research, 3, 329–348.

    Google Scholar 

  • Irvine, C. H. (1970). Shoe sole slipperiness on structural steel. Materials Research and Standards, 10(4), 21–22.

    Google Scholar 

  • Jenson, A., & Chenoweth, H. H. (1990). Applied engineering mechanics (p. 164). Ohio: Glencoe/McGraw-Hill.

    Google Scholar 

  • Jones, C., Manning, D. P., & Bruce, M. (1995). Detecting and eliminating slippery footwear. Ergonomics, 38(2), 242–249.

    Article  Google Scholar 

  • Jung K., & Reidiger, G. (1982). Recent developments regarding the inspection of non-slip floor coverings. Die Berufsgenossenschaft, 1–7; Health and safety executive translation number 12053.

    Google Scholar 

  • Kennaway, A. (1970). On the reduction of slip of rubber crutch tips on wet pavements, snow and ice. Bulletin of Prosthetics Research, Fall, pp. 130–144.

    Google Scholar 

  • Kim, I. J. (1996a). Tribological concepts for the investigation of the pedestrian slipping and falling accidents—Part I. In International Occupational Injury Symposium, February, Sydney, Australia, p. 101.

    Google Scholar 

  • Kim, I. J. (1996b). Tribological approach for the analysis of pedestrian slip hazard-II. In Proceedings of the ‘96 Spring Conference of Korean Institute of Industrial Engineers, April, Seoul, Korea, pp. 279–285.

    Google Scholar 

  • Kim, I. J. (1996c). Microscopic investigation to analyze the slip resistance of shoes. In Proceedings of the 4th Pan Pacific Conference on Occupational Ergonomics, November, Taiwan, ROC, pp. 68–73.

    Google Scholar 

  • Kim, I. J. (1996d). Microscopic observation of shoe heels for pedestrian slip hazard investigation. In Proceedings of the 1st Annual International Conference on Industrial Application and Practice, December, Texas, U.S.A., pp. 243–250.

    Google Scholar 

  • Kim, I. J. (2004a). Development of a new analyzing model for quantifying pedestrian slip resistance characteristics: Part I—Basic concepts and theories. Industrial Journal of Industrial Ergonomics, 33(5), 395–401.

    Article  Google Scholar 

  • Kim, I. J. (2004b). Development of a new analyzing model for quantifying pedestrian slip resistance characteristics: Part II—Experiments and validations. Industrial Journal of Industrial Ergonomics, 33(5), 403–414.

    Article  Google Scholar 

  • Kim, I. J. (2006a). The current hiatus in fall safety measures. In W. Karwowski (Ed.), International encyclopedia of ergonomics and human factors-2005 (pp. 2572–2576). USA: Taylor & Francis Group, LLC.

    Google Scholar 

  • Kim, I. J. (2006b). A new paradigm for characterizing slip resistance properties. In W. Karwowski (Ed.), International Encyclopedia of Ergonomics and Human Factors-2005 (pp. 2735–2740). USA: Taylor & Francis Group, LLC.

    Google Scholar 

  • Kim, I. J. (2015a). Practical design search for optimal floor surface finishes to prevent fall incidents (Chapter 5). In Evans, B. (Ed.), Accidental falls: Risk factors, prevention strategies and long-term outcomes (pp. 80–103). Hauppauge, NY 11788, USA: Nova Science Publishers, Inc.

    Google Scholar 

  • Kim, I. J. (2015b). Slip-resistance measurements for assessing pedestrian falls: Facts and fallacies (Chapter 6). In Evans, B. (Ed.), Accidental falls: Risk factors, prevention strategies and long-term outcomes (pp. 105–125). Hauppauge, NY 11788, USA: Nova Science Publishers, Inc.

    Google Scholar 

  • Kim, I. J. (2015c). Wear observation of shoe surfaces: Application for slip and fall safety assessments. Tribology Transactions, 58(3), 407–417.

    Google Scholar 

  • Kim, I. J. (2015d). Research challenges on slip-resistance measurements for assessing pedestrian fall incidents. Journal of Ergonomics, 5(3). doi:10.4172/2165-7556.1000e142

  • Kim, I. J. (2016a). A study on wear development of floor surfaces: Impact on pedestrian walkway slip-resistance performance. Tribology International, 95, 316–323.

    Article  Google Scholar 

  • Kim, I. J. (2016b). Identifying shoe wear mechanisms and associated tribological characteristics: The importance for slip resistance evaluation. Wear, 360–361, 77–86.

    Article  Google Scholar 

  • Kim, I. J., & Nagata, H. (2008a). Nature of the shoe wear: Its uniqueness, complexity and effects on slip resistance properties. Contemporary ergonomics (Vol. 15, pp. 728–734). UK: Taylor & Francis.

    Google Scholar 

  • Kim, I. J., & Nagata, H. (2008b). Research on slip resistance measurements—A new challenge. Industry Health, 46(1), 66–76.

    Article  Google Scholar 

  • Kim, I. J., & Smith, R. (1998a). A study of the comparative geometry mating between the surfaces of the shoe and floor in pedestrian slip resistance measurements. In The 5th Pan-Pacific Conference on Occupational Ergonomics, July, Kitakyushu, Japan, pp. 34–37.

    Google Scholar 

  • Kim, I. J., & Smith, R. (1998b). Tribological characterization of the frictional force component in pedestrian slip resistance measurements. In Third World Congress of Biomechanics (WCB ‘98), August, Hokkaido, Japan.

    Google Scholar 

  • Kim, I. J., & Smith R. (1999). The relationship between wear, surface topography characteristics and coefficient of friction as a means of assessing the slip hazards. In 2nd Asia-Pacific Conference on Industrial Engineering and Management Systems (APIEMS’99), October, Ashikaga, Japan, pp. 155–161.

    Google Scholar 

  • Kim, I. J., & Smith, R. (2000). Observation of the floor surface topography changes in pedestrian slip resistance measurements. Industrial Journal of Industrial Ergonomics, 26(6), 581–601.

    Article  Google Scholar 

  • Kim, I. J., & Smith, R. (2001a, June). A critical analysis on the friction measuring concept for slip resistance evaluation. In ASTM Symposium on the Metrology of Pedestrian Locomotion and Slip Resistance (pp. 1–14). West Conshodocken, Pennsylvania, USA: ASTM Headquarters.

    Google Scholar 

  • Kim, I. J., & Smith, R. (2001b, August). A study for characterising topography changes of shoe surfaces in the early stage of slip resistance measurements—Bearing area curve. In 6th Pan-Pacific Conference on Occupational Ergonomics, Beijing, P. R. China, pp. 299–303.

    Google Scholar 

  • Kim, I. J., & Smith, R. (2001c, August). Three-dimensional analysis of floor surface wear during slip resistance measurements. In 6th Pan-Pacific Conference on Occupational Ergonomics, Beijing, P. R. China, pp. 304–308.

    Google Scholar 

  • Kim, I. J., & Smith, R. (2003). A critical analysis of the relationship between shoe-floor wear and pedestrian/walkway slip resistance. In M. I. Marpet & M. A. Sapienza (Eds.), Metrology of pedestrian locomotion and slip resistance (American Society of Testing and Materials, Special technical publication 1424) (pp. 33–48). Philadelphia, USA: ASTM International.

    Chapter  Google Scholar 

  • Kim, I. J., Hsiao, H., & Simeonov, P. (2013). Functional levels of floor surface roughness for the prevention of slips and falls: Clean-and-dry and soapsuds-covered wet surfaces. Applied Ergonomics, 44(1), 58–64.

    Article  Google Scholar 

  • Kim, I. J., Smith, R., & Nagata, H. (2001). Microscopic observations of the progressive wear on the shoe surfaces which affect the slip resistance characteristics. Industrial Journal of Industrial Ergonomics, 28(1), 17–29.

    Article  Google Scholar 

  • Kime, G. A. (1991). Slip resistance and the UK slip resistance research group. Safety Science, 14(3–4), 223–229.

    Article  Google Scholar 

  • Krim, J. (2012). Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Advances in Physics, 61(3), 155–323.

    Article  Google Scholar 

  • Langdon, S. (2011). Wet floors. The battle over slip, hygiene and maintenance. Advanced Technology Testing and Research. September 23. Available from: http://www.attar.com.au/ckfinder/userfiles/files/MAV_article_Final_web.pd

  • Leclercq, S., & Saulnier, H. (2002). Floor slip resistance changes in food sector workshops: prevailing role played by “fouling”. Safety Science, 40(7), 659–673.

    Article  Google Scholar 

  • Li, K. W., Chang, W. R., & Chang, C. C. (2009). Evaluation of two models of a slip meter. Safety Science, 47(10), 1434–1439.

    Article  Google Scholar 

  • Manning, D. P., & Jones, C. (1994). The superior slip-resistance of footwear soling compound T66/103. Safety Science, 18(1), 45–60.

    Article  Google Scholar 

  • Manning, D. P., Jones, C., & Bruce, M. (1983). Improved slip resistance on oil from surface roughness of footwear. Rubber Chemistry and Technology, 56(4), 703–717.

    Article  Google Scholar 

  • Manning, D. P., Jones, C., & Bruce, M. (1985). Boots for oily surfaces. Ergonomics, 28, 1011–1019.

    Article  Google Scholar 

  • Manning, D. P., Jones, C., & Bruce, M. (1990). Proof of shoe slip-resistance by a walking traction test. Journal of Occupational Accidents, 12(4), 255–270.

    Article  Google Scholar 

  • Manning, D. P., Jones, C., Rowland, F. J., & Roff, M. (1998). The surface roughness of a rubber soling material determines the coefficient of friction on water-lubricated surfaces. Journal of Safety Research, 29(4), 275–283.

    Article  Google Scholar 

  • Meriam, J. L., & Kraige L. G. (1992). Engineering mechanics volume 1 statics (p. 346). New York, NY: John Wiley.

    Google Scholar 

  • Nagata, H. (1993). Fatal and non-fatal falls—A review of earlier articles and their developments. Safety Science, 16, 379–390.

    Article  Google Scholar 

  • Perkins, P. (1985, May). Sole design guidelines developed to improve slip-resistance. SATRA Bulletin, pp. 58–59.

    Google Scholar 

  • Perkins, P. J., & Wilson, M. P. (1983). Slip resistance testing of shoes—New development. Ergonomics, 26(1), 73–82.

    Article  Google Scholar 

  • Proctor, T. D. (1993). Slipping accidents in Great Britain—An update. Safety Science, 16(3–4), 367–377.

    Article  Google Scholar 

  • Proctor, T. D., & Coleman, V. (1988). Slipping and tripping accidents and falling accidents in Great Britain—Present and future. Journal of Occupational Accidents, 9(4), 269–285.

    Article  Google Scholar 

  • Rivière, J. C. (1983). Practical surface analysis by auger and x-ray photoelectron spectroscopy. In D. Briggs & M. P. Seah (Eds.), Instrumentation. Chichester, England: Wiley (Chapter 2).

    Google Scholar 

  • Rowland, F. J., Jones, C., & Manning, D. P. (1996). Surface roughness of footwear soling materials: Relevance to slip-resistance. Journal of Testing and Evaluation, 24(6), 368–376.

    Article  Google Scholar 

  • Sherrington, I., & Smith, E. H. (1987). Parameters for characterizing the surface topography of engineering components. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 201(4), 297–306.

    Google Scholar 

  • Sigler, A., Geib, M. N., & Boone, T. H. (1948, May). Measurement of the slipperiness of walkway surfaces research paper RP 1879. Journal of Research of the National Bureau of Standards, 40, 339–346.

    Google Scholar 

  • Stachowiak, G. W., & Batchelor, A. W. (2005). Engineering tribology. Burlington, MA, USA: Butterworth-Heinemann.

    Google Scholar 

  • Stachowiak, G. P., Podsiadlo, P., & Stachowiak, G. W. (2005). A comparison of texture feature extraction methods for machine condition monitoring and failure analysis. Tribology Letters, 20(2), 133–147.

    Article  Google Scholar 

  • Stevenson, M. G., Hoang, K., Bunterngchit, Y., & Lloyd, D. G. (1989). Measurement of slip resistance of shoes on floor surfaces, Part 1: Methods. Journal of Occupational Health and Safety, 5(2), 115–120.

    Google Scholar 

  • Stout, K. J., & Davis, E. J. (1984). Surface topography of cylinder bores-the relationship between manufacture, characterization and function. Wear, 95(2), 111–125.

    Article  Google Scholar 

  • Strandberg, L. (1983). On accident analysis and slip resistance measurement. Ergonomics, 26(1), 11–32.

    Article  MathSciNet  Google Scholar 

  • Strandberg, L. (1985). The effect of conditions underfoot on falling and overexertion accidents. Ergonomics, 28(1), 131–147.

    Article  Google Scholar 

  • Strandberg, L., & Lanshammar, H. (1981). The dynamics of slipping accidents. Journal of Occupational Accidents, 3(3), 153–162.

    Google Scholar 

  • The Tile Association. (2016). Slip resistance of hard flooring. Technical Publication. Available from: http://www.tiles.org.uk/wp-content/uploads/2016/01/Slip-Resistance-of-Hard-Flooring-Technical-Publication.pdf

  • Tisserand, M. (1985). Progress in the prevention of falls caused by slipping. Ergonomics, 28(7), 1027–1042.

    Article  Google Scholar 

  • van der Voort, H. T. M., Brakenhoff, G. T., & Janssen, G. C. A. M. (1987). Determination of the 3-dimensional properties of a confocal scanning laser microscope. Optik, 78, 48–53.

    Google Scholar 

  • White, J. G., & Amos, W. B. (1987). Confocal microscopy comes of age. Nature, 328(6126), 183–184.

    Article  Google Scholar 

  • Wilke, V. (1985). Optical scanning microscopy—The laser scan microscope. Scanning, 7, 88–96.

    Article  Google Scholar 

  • Wilson, M. P., & Perkins, P. J. (1985). Evaluation of a slip-resistance test for shoes. Ergonomics, 28, 1081–1085.

    Article  Google Scholar 

  • Wilson, T. (1985). Scanning optical microscopy. Scanning, 7, 79–87.

    Article  Google Scholar 

  • Wilson, T., & Carlini, A. R. (1988). Three-dimensional imaging in confocal imaging systems with finite sized detectors. Journal of Microscopy, 149(1), 51–66.

    Article  Google Scholar 

  • Wilson, T., & Sheppard, C. (1984). Theory and practice of scanning optical microscope. London: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ju Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kim, IJ. (2017). Tribological Approaches for the Pedestrian Safety Measurements and Assessments. In: Pedestrian Fall Safety Assessments. Springer, Cham. https://doi.org/10.1007/978-3-319-56242-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56242-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56241-4

  • Online ISBN: 978-3-319-56242-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics