Skip to main content

Pedestrian Slip Resistance Measurements: Verities and Challenges

  • Chapter
  • First Online:
Pedestrian Fall Safety Assessments
  • 893 Accesses

Abstract

Fall incidents resulting from slips or trips are one of the most common injuries at workplaces . On average, they cause 40% of all reported major injuries and lead to other types of serious accidents such as falls from height (HSE 2011). Slips and falls are also one of the leading categories of non-traffic accidents in terms of serious injuries and fatalities, as well as one of the leading causes ofinjury-related deaths for the elderly aged 65 and over (Layne and Landen 1997; Scott 2009; Yeoh et al. 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASTM D2240-64T. (2000). Standard test method for rubber property—Durometer hardness. ASTM Committee D11 on Rubber. Available at: http://www.abqindustrial.net/store/images/products/dmt/RX-DD/d2240.pdf

  • Barry, B., & Milburn, P. (2015). Tribology, friction and traction: Understanding shoe-surface interaction. Available at: http://www98.griffith.edu.au/dspace/bitstream/handle/10072/55722/87973_1.pdf?sequence=1

  • Bonstingl, R. W., Morehouse, C. A., & Niebel, B. W. (1975). Torques developed by different types of shoes on various playing surfaces. Medicine & Science in Sports & Exercise, 7(2), 127–131.

    Google Scholar 

  • Bowden, F. P., & Leben, L. (1939). The nature of sliding and the analysis of friction. Proceedings of the Royal Society, 169, 371–391.

    Article  Google Scholar 

  • Brungraber, R. J. (1976). An overview of floor slip-resistance research with annotated bibliography. National Bureau of Standard, NBS Technical Note 895, U.S. Department of Commerce, National Technical Information Service, PB-248 985. Washington, January.

    Google Scholar 

  • Chaffin, D. B., Woldstad, J. C., & Trujillo, A. (1992). Floor/shoe slip resistance measurement. Journal of American Industrial Hygiene Association, 53(5), 283–289.

    Article  Google Scholar 

  • Chang, W. R., Grönqvist, R., Leclercq, S., Myung, R., Makkonen, L., Strandberg, L., et al. (2001). The role of friction in the measurement of slipperiness, Part 1: Friction mechanisms and definition of test conditions. Ergonomics, 44(13), 1217–1232.

    Article  Google Scholar 

  • Czichos, H. (1986). Introduction to friction and wear. In K. Friedrich (Ed.), Friction and wear of polymer composites. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Derieux, J. B. (1934). The coefficient of friction of rubber. Journal of the Elisha Mitchell Scientific Society. Rubber Chemistry and Technology, 8, 441–442.

    Google Scholar 

  • Dowson, D. (1979). History of tribology. London: Longman, UK.

    Google Scholar 

  • Dowson, D. (1997). History of tribology (2nd ed.). Professional Engineering Publishing.

    Google Scholar 

  • Fong, D. T. P., Hong, Y., & Li, J. X. (2009). Human walks carefully when the ground dynamic coefficient of friction drops below 0.41. Safety Science, 47(10), 1429–1433.

    Article  Google Scholar 

  • Gould, P. (2003). Smart, clean surfaces. Materials Today, 6(11), 44–48.

    Article  Google Scholar 

  • Grönqvist, R. (1995). Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors. Ergonomics, 38(2), 224–241.

    Article  Google Scholar 

  • Grönqvist, R., Hirvonen, M., Rajamäki, E., & Matz, S. (2003). The validity and reliability of a portable slip meter for determining floor slipperiness during simulated heel strike. Accident Analysis & Prevention, 35(2), 211–225.

    Article  Google Scholar 

  • Grönqvist, R., Roine, J., Järvinen, E., & Korhonen, E. (1989). An apparatus and a method for determining the slip resistance of shoes and floors by simulation of human foot motions. Ergonomics, 32(8), 979–995.

    Article  Google Scholar 

  • Harrison, R., & Malkin, P. (1983). On-site testing of shoe and floor combinations. Ergonomics, 26(1), 101–108.

    Article  Google Scholar 

  • Health and Safety Executive (HSE). (2011). Investigation of slip resistance and the hygienic cleaning of floors in hospital settings. RR889 research report. Available at: http://www.hse.gov.uk/research/rrpdf/rr889.pdf

  • Heilmann, P., & Rigney, D. A. (1981). Sliding friction of metals. In D. Dowson, C. M. Taylor, M. Godet, & D. Berthe (Eds.), Friction and traction (pp. 15–19). Guilford: IPC: Business Press.

    Google Scholar 

  • Hoang, K., Stevenson, M. G., Nhieu, J., & Bunterngchit, Y. (1987). Dynamic friction at heel strike between a range of protective footwear and non-slip floor surface. Report No. CSS/1/87. Center for Safety Science, University of New South Wales, Australia. July.

    Google Scholar 

  • Hoang, K., Stevenson, M. G., & Willgoss, R. (1985). Measurement of dynamic friction between shoe soles and walkway surfaces. In Proceedings of the 22nd annual conference of the ergonomics society of ANZ (pp. 265–171). Toowoomba. December.

    Google Scholar 

  • James, D. I. (1983). Rubbers and plastics in shoes and flooring: The importance of kinetic friction. Ergonomics, 26(1), 83–99.

    Article  Google Scholar 

  • Jenson, A., & Chenoweth, H. H. (1990). Applied engineering mechanics (p. 164). Ohio: Glencoe/McGraw-Hill.

    Google Scholar 

  • Johnson, K. L. (1981). Aspects of friction. In D. Dowson, C. M. Taylor, M. Godet, & D. Berthe (Eds.), Friction and traction. Proceedings of the 7th leeds-lyons symposium on tribology. The Institute of Tribology, Department of Mechanical Engineering.

    Google Scholar 

  • Kim, I. J. (2004a). Development of a new analyzing model for quantifying pedestrian slip resistance characteristics: Part I—Basic concepts and theories. Industrial Journal of Industrial Ergonomics, 33(5), 395–401.

    Article  Google Scholar 

  • Kim, I. J. (2004b). Development of a new analyzing model for quantifying pedestrian slip resistance characteristics: Part II—Experiments and validations. Industrial Journal of Industrial Ergonomics, 33(5), 403–414.

    Article  Google Scholar 

  • Kim, I. J. (2006). The current hiatus in fall safety measures. In W. Karwowski (Ed.), International encyclopedia of ergonomics and human factors-2005 (pp. 2572–2576). USA: Taylor & Francis Group, LLC.

    Google Scholar 

  • Kim, I. J. (2015a). Practical design search for optimal floor surface finishes to prevent fall incidents, In B. Evans, (Ed.), Accidental falls: Risk factors, prevention strategies and long-term outcomes (pp. 80–103). Hauppauge, NY, USA: Nova Science Publishers, Inc. (Chapter 5).

    Google Scholar 

  • Kim, I. J. (2015b). Slip-resistance measurements for assessing pedestrian falls: facts and fallacies. In B. Evans (Ed.), Accidental falls: Risk factors, prevention strategies and long-term outcomes (pp. 105–125). Hauppauge, NY, USA: Nova Science Publishers, Inc. (Chapter 6).

    Google Scholar 

  • Kim, I. J. (2015c). Wear observation of shoe surfaces: Application for slip and fall safety assessments. Tribology Transactions, 58(3), 407–417.

    Article  Google Scholar 

  • Kim, I. J. (2015d). Research challenges on slip-resistance measurements for assessing pedestrian fall incidents. Journal of Ergonomics, 5(3). doi:10.4172/2165-7556.1000e142

  • Kim, I. J. (2016). Identifying shoe wear mechanisms and associated tribological characteristics: The importance for slip resistance evaluation. Wear, 360–361, 77–86.

    Article  Google Scholar 

  • Kim, I. J., Hsiao, H., & Simeonov, P. (2013). Functional levels of floor surface roughness for the prevention of slips and falls: Clean-and-dry and soapsuds-covered wet surfaces. Applied Ergonomics, 44(1), 58–64.

    Article  Google Scholar 

  • Kim, I. J., & Nagata, H. (2008a). Research on slip resistance measurements—A new challenge. Industry Health, 46(1), 66–76.

    Article  Google Scholar 

  • Kim, I. J., & Nagata, H. (2008b). Nature of the shoe wear: Its uniqueness, complexity, and effects on slip resistance properties. In Contemporary Ergonomics 2008 (Vol. 15, pp. 728–734). Taylor & Francis.

    Google Scholar 

  • Kim, I. J., & Smith, R. (1998a, July). A study of the comparative geometry mating between the surfaces of the shoe and floor in pedestrian slip resistance measurements. The 5th Pan-Pacific Conference on Occupational Ergonomics (pp. 34–37). Kitakyushu, Japan.

    Google Scholar 

  • Kim, I. J., & Smith, R. (1998b, August). Tribological characterization of the frictional force component in pedestrian slip resistance measurements. Third World Congress of Biomechanics (WCB ‘98). Hokkaido, Japan.

    Google Scholar 

  • Kim, I. J., & Smith, R. (2000). Observation of the floor surface topography changes in pedestrian slip resistance measurements. Industrial Journal of Industrial Ergonomics, 26(6), 581–601.

    Article  Google Scholar 

  • Kim, I. J., & Smith, R. (2003). A critical analysis of the relationship between shoe-floor wear and pedestrian/walkway slip resistance. In M. I. Marpet, & M. A. Sapienza (Eds.), Metrology of pedestrian locomotion and slip resistance, American society of testing and materials. Special technical publication (Vol. 1424, pp. 33–48). Philadelphia, USA: ASTM International.

    Google Scholar 

  • Kim, I. J., Smith, R., & Nagata, H. (2001). Microscopic observations of the progressive wear on the shoe surfaces which affect the slip resistance characteristics. Industrial Journal of Industrial Ergonomics, 28(1), 17–29.

    Article  Google Scholar 

  • Lambe, T. W., & Whitman, R. V. (1979). Soil Mechanics, SI version. Series in Soil Engineering. New York, NY: John Wiley and Sons.

    Google Scholar 

  • Layne, L. A., & Landen, D. D. (1997). A descriptive analysis of nonfatal occupational injuries to older workers, using a national probability sample of hospital emergency departments. Journal of Occupational and Environmental Medicine, 39(9), 855–865.

    Article  Google Scholar 

  • Leclercq, S., Tisserand, M., & Saulnier, H. (1993). Quantification of the slip resistance of metal surfaces at industrial sites. Part I. Implementation of a portable device. Safety Science, 17(1), 29–39.

    Article  Google Scholar 

  • Ludema, K. C. (1987). Friction: A study in the prevention of seizure. ASTM Standardization News. May 54–58.

    Google Scholar 

  • Miller, J. M. (1983). Slipper work surfaces: Towards a performance definition and quantitative coefficient of friction criteria. Journal of Safety Research, 14(4), 145–158.

    Article  Google Scholar 

  • Moore, D. F. (1972). The friction and lubrication of elastomers. In International series of monographs on materials science and technology (Vol. 9). Headington Hill Hall, Oxford: Pergamon Press Ltd.

    Google Scholar 

  • Moore, D. F. (1975). Principles and application of tribology. Oxford: Pergamon Press.

    Google Scholar 

  • Murphy, T. (2003). Slip-resistant flooring (pp. 390–396). The Society for Protective Coatings.

    Google Scholar 

  • Myung, R., Smith, J. L., & Leamon, T. B. (1992a). Slip distance for slip/fall studies. In Advances in industrial ergonomics and safety (Vol. IV, 983–987).

    Google Scholar 

  • Myung, R., Smith, J. L., & Leamon, T. B. (1992b). Slip distance as an objective criterion to determine the dominant parameter between static and dynamic COFs. In Proceedings of the human factors society, 36th annual meeting (pp. 738–741).

    Google Scholar 

  • Nagata, H., Watanabe, H., Inoue, Y., and Kim, I. J. (2009). Fall and validities of various methods to measure frictional properties of slippery floors covered with soapsuds. In Proceedings of the 17th world congress on ergonomics. Beijing, CD-ROM.

    Google Scholar 

  • Nigg, B. M. (1990). The validity and relevance of tests used for the assessment of sports surfaces. Medicine and Science in Sports and Exercise, 22(1), 131–139.

    Article  Google Scholar 

  • Nigg, B. M., Bahlsen, A. H., Denoth, J., Luethi, S. M., & Stacoff, A. (1986). Factors influencing kinetic and kinematic variables in running. In B. M. Nigg (Ed.), Biomechanics of 16 running shoes (pp. 139–159). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Nigg, B. M., & Segesser, B. (1988). The influence of playing surfaces on the load on the locomotor system and on football and tennis injuries. Sports Medicine, 5(6), 375–385.

    Article  Google Scholar 

  • Perkins, P. J., & Wilson, M. P. (1983). Slip resistance testing of shoes—New development. Ergonomics, 26(1), 73–82.

    Article  Google Scholar 

  • Proctor, T. D., & Coleman, V. (1988). “Slipping and tripping accidents and falling accidents in Great Britain—Present and future. Journal of Occupational Accidents, 9(4), 269–285.

    Article  Google Scholar 

  • Rabinowicz, E. (1956). Stick and slip. Scientific American, 194, 109–118.

    Article  Google Scholar 

  • Rabinowicz, E. (1958). The intrinsic variables affecting the stick-slip process. Proceedings of the Physical Society of London, 71, 668–675.

    Article  Google Scholar 

  • Redfern, M. S., & Bidanda, B. (1994). Slip resistance of the shoe-floor interface under biomechanically relevant conditions. Ergonomics, 37(3), 511–524.

    Article  Google Scholar 

  • Scott, W. E. (2009). Falls at work: protect your employees: statistics of accidents. The National Safety Council.

    Google Scholar 

  • Strandberg, L. (1983). On accident analysis and slip-resistance measurement. Ergonomics, 26(1), 11–32.

    Article  MathSciNet  Google Scholar 

  • Strandberg, L., & Lanshammar, H. (1983). On the biomechanics of slipping accidents. In V. I. I. I. Biomechanics, H. Matsui, & K. Kobayashi (Eds.), Biomechanics VIII (pp. 397–402). USA: University Park Press, Baltimore.

    Google Scholar 

  • Suh, N. P., & Sin, H. C. (1981). The genesis of friction. Wear, 69(1), 91–114.

    Article  Google Scholar 

  • Tabor, D. (1981). Friction-the present state of our understanding. Journal of Lubrication Technology, 103, 169–179.

    Google Scholar 

  • Valiant, G. A. (1994). Evaluating outsole traction of footwear. In W. Herzog, B. M. Nigg & A. van den Bogert (Eds.), Proceedings of the Eighth Biennial Conference (pp. 326–327). Calgary, Canada: Canadian Society for Biomechanics.

    Google Scholar 

  • Van Gheluwe, B., Deporte, E., & Hebbelinck, M. (1983). Frictional forces and torques of soccer shoes on artificial turf. In B. M. Nigg & B. A. Kerr (Eds.), Biomechanical aspects of sports shoes and playing surfaces (pp. 161–168). Calgary: University of Calgary Press.

    Google Scholar 

  • Wilson, M. P. (1990). Development of SATRA slip test and tread pattern design guideline, slips, stumbles, and falls: Pedestrian footwear and surfaces. In B. E. Gray (Ed.), ASTM STP 1103 (pp. 113–123). Philadelphia: American Society for Testing and Materials.

    Google Scholar 

  • Yeoh, H. T., Lockhart, T. E., & Wu, X. (2013). Non-fatal occupational falls on the same level. Ergonomics, 56(2), 153–165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ju Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kim, IJ. (2017). Pedestrian Slip Resistance Measurements: Verities and Challenges. In: Pedestrian Fall Safety Assessments. Springer, Cham. https://doi.org/10.1007/978-3-319-56242-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56242-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56241-4

  • Online ISBN: 978-3-319-56242-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics