Skip to main content

Ecological Assembly of Chemical Mixtures

  • Chapter
  • First Online:
Chemical Mixtures and Combined Chemical and Nonchemical Stressors

Abstract

Human-environment interactions have a significant role in the formation of chemical mixtures in the environment and by extension in human tissues and fluids. These interactions, which include decisions to purchase and use products containing chemicals as well as behaviors and activities that explain the uptake and absorption of chemicals, may be viewed as an ecological relationship between humans and their environments. Methods with origins in community ecology for evaluating structure in assemblages of flora and fauna are applied to investigate the nonrandom assembly of chemical species. Presence-absence matrix-based techniques are used to elaborate co-occurrence patterns with the aim of identifying the principal chemicals which tend to co-occur. This ecological premise is expanded by drawing on consumer market basket analysis techniques to show how this approach may help identify robust co-occurrence patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An Orbitrap (Orbitrap™, Thermo Scientific™) mass analyzer traps ions in an electrostatic field where the oscillations of the ions vary in accordance with their mass to charge ratio (Hu et al. 2005).

  2. 2.

    Now used for the identification of sets of a variety of items in large databases (e.g., a specific set of symptoms characteristic of a rare disease observed in a medical records database), the technique originally was developed to examine customer behavior with respect to consumer products purchased.

  3. 3.

    See Gennings et al. (2005) for discussion of a method based on consideration of changes in the slope of the dose-response curve of one chemical produced by the presence of other chemicals.

  4. 4.

    All other factors held constant; the number of species on an island is generally observed to increase with increasing area (Connor and McCoy 1979).

  5. 5.

    For N species, there are N(N–1)/2 possible species pairs or 136 pairs for N = 17 species.

  6. 6.

    Evaluations of CHECKER and COMBO indices were conducted only for null models 1, 8, and 9 (Tornero-Velez et al. 2012).

References

  • Agrawal, R., T. Imieliński, and A. Swami. 1993. Mining association rules between sets of items in large databases. ACM SIGMOD Record 22 (2): 207–216.

    Article  Google Scholar 

  • Arnot, J.A., D. Mackay, T.F. Parkerton, R.T. Zaleski, and C.S. Warren. 2010. Multimedia modeling of human exposure to chemical substances: The roles of food web biomagnification and biotransformation. Environmental Toxicology and Chemistry 29 (1): 45–55.

    Article  CAS  PubMed  Google Scholar 

  • Arnot, J.A., T.N. Brown, F. Wania, K. Breivik, and M.S. McLachlan. 2012. Prioritizing chemicals and data requirements for screening-level exposure and risk assessment. Environ Health Persp 120: 1565−1570.

    Article  Google Scholar 

  • Arnot, J.A., T.N. Brown, and F. Wania. 2014. Estimating screening-level organic chemical half-lives in humans. Environmental Science & Technology 48 (1): 723–730.

    Article  CAS  Google Scholar 

  • Atmar, W., and B. Patterson. 1993. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96 (3): 373–382.

    Article  PubMed  Google Scholar 

  • Bartha, S., T. Czárán, and B. Oborny. 1995. Spatial constraints masking community assembly rules: A simulation study. Folia Geobotanica 30: 471–482.

    Article  Google Scholar 

  • Bell SM, S.W. Edwards. 2014. Building associations between markers of environmental stressors and adverse human health impacts using frequent itemset mining. In: Proc 2014 SIAM Int Conf Data Min, 551–559.

    Google Scholar 

  • Bell, S.M., and S.W. Edwards. 2015. Identification and prioritization of relationships between environmental stressors and adverse human health impacts. Environmental Health Perspectives 123 (11): 1193–1199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks, D.R. 1985. Historical ecology: A new approach to studying the evolution of ecological associations. Annals of the Missouri Botanical Garden 72: 660–680.

    Article  Google Scholar 

  • Bucher, J.R., and G. Lucier. 1998. Current approaches toward chemical mixture studies at the National Institute of Environmental Health Sciences and the U.S. National Toxicology Program. Environmental Health Perspectives 106 (Suppl 6): 1295–1298. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherta, L., T. Portolés, E. Pitarch, J. Beltran, F.J. López, C. Calatayud, et al. 2015. Analytical strategy based on the combination of gas chromatography coupled to time-of-flight and hybrid quadrupole time-of-flight mass analyzers for non-target analysis in food packaging. Food Chemistry 188: 301–308.

    Article  CAS  PubMed  Google Scholar 

  • Connor, E.F., and E.D. McCoy. 1979. The statistics and biology of the species-area relationship. The American Naturalist 113 (6): 791–833.

    Article  Google Scholar 

  • Connor, E.F., and D. Simberloff. 1979. The assembly of species communities: Chance or competition? Ecology 60: 1132–1140.

    Article  Google Scholar 

  • Connor, E.F., M.D. Collins, and D. Simberloff. 2013. The checkered history of checkerboard distributions. Ecology 94 (11): 2403–2414.

    Article  PubMed  Google Scholar 

  • Croley, T.R., K.D. White, J.H. Callahan, and S.M. Musser. 2012. The chromatographic role in high resolution mass spectrometry for non-targeted analysis. Journal of the American Society for Mass Spectrometry 23 (9): 1569–1578.

    Article  CAS  PubMed  Google Scholar 

  • Diamond, J.M. 1975. Assembly of species communities. In Ecology and evolution of communities, ed. M.L. Cody and J.M. Diamond, 342–444. Cambridge, Massachusetts: Belknap Press.

    Google Scholar 

  • Diamond, J.M., and M.E. Gilpin. 1982. Examination of the “null” model of Connor and Simberloff for species co-occurrences on islands. Oecologia 52 (1): 64–74.

    Article  PubMed  Google Scholar 

  • Egeghy, P.P., R. Judson, S. Gangwal, S. Mosher, D. Smith, J. Vail, et al. 2012. The exposure data landscape for manufactured chemicals. Sci Total Environ 414: 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Elabbas, L.E., M.A. Finnilä, M. Herlin, N. Stern, C. Trossvik, W.J. Bowers, J. Nakai, J. Tuukkanen, R.A. Heimeier, A. Åkesson, and H. Håkansson. 2011. Perinatal exposure to environmental contaminants detected in Canadian Arctic human populations changes bone geometry and biomechanical properties in rat offspring. Journal of Toxicology and Environmental Health, Part A 74 (19): 1304–1318.

    Article  CAS  Google Scholar 

  • Elabbas, L.E., J. Esteban, X. Barber, G. Hamscher, H. Nau, W.J. Bowers, J.S. Nakai, M. Herlin, A. Åkesson, M. Viluksela, and D. Borg. 2014. In utero and lactational exposure to a mixture of environmental contaminants detected in Canadian Arctic human populations alters retinoid levels in rat offspring with low margins of exposure. Journal of Toxicology and Environmental Health, Part A 77 (5): 223–245.

    Article  CAS  Google Scholar 

  • Fletcher T, Savitz D, Steenland K. 2005. C8 science panel. http://www.c8sciencepanel.org/index.html. Accessed 20 January 2018.

  • Florian, M., J. Yan, S. Ulhaq, M. Coughlan, M. Laziyan, W. Willmore, and X. Jin. 2013. Northern contaminant mixtures induced morphological and functional changes in human coronary artery endothelial cells under culture conditions typifying high fat/sugar diet and ethanol exposure. Toxicology 313 (2): 103–112.

    Article  CAS  PubMed  Google Scholar 

  • França, F.G.R., and A.F.B. Araújo. 2007. Are there co-occurrence patterns that structure snake communities in central Brazil? Brazilian Journal of Biology 67 (1): 33–40.

    Article  Google Scholar 

  • Gennings, C., W.H. Carter Jr., R.A. Carchman, L.K. Teuschler, J.E. Simmons, and E.W. Carney. 2005. A unifying concept for assessing toxicological interactions: Changes in slope. Toxicological Sciences 88 (2): 287–297.

    Article  CAS  PubMed  Google Scholar 

  • Gilpin, M.E., and J.M. Diamond. 1982. Factors contributing to non-randomness in species co-occurrences on islands. Oecologia 52 (1): 75–84.

    Article  PubMed  Google Scholar 

  • Gotelli, N.J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621.

    Article  Google Scholar 

  • Gotelli, N.J., and L.G. Abele. 1982. Statistical distributions of West Indian land bird families. Journal of Biogeography 9: 421–435.

    Article  Google Scholar 

  • Gotelli, N.J., and A.M. Ellison. 2002. Assembly rules for New England ant assemblages. Oikos 99 (3): 591–599.

    Article  Google Scholar 

  • Gotelli, N.J., and G.R. Graves. 1996. Null models in ecology. Washington, DC: Smithsonian Institution Press. http://vertebrates.si.edu/birds/birds_staff_pages/Garygraves_Nullmodelsbook.html. Accessed 20 January 2018.

  • Gotelli, N.J., and K. Rohde. 2002. Co-occurrence of ectoparasites of marine fishes: A null model analysis. Ecology Letters 5 (1): 86–94.

    Article  Google Scholar 

  • Götzenberger, L., F. de Bello, K.A. Bråthen, J. Davison, A. Dubuis, A. Guisan, J. Lepš, R. Lindborg, M. Moora, M. Pärtel, and L. Pellissier. 2012. Ecological assembly rules in plant communities—approaches, patterns and prospects. Biological Reviews 87 (1): 111–127.

    Article  PubMed  Google Scholar 

  • Hahsler, M., B. Grün, and K. Hornik. 2005. arules - A computational environment for mining association rules and frequent item sets. Journal of Statistical Software 14 (15).

    Google Scholar 

  • Hahsler, M., and K. Hornik. 2007. Building on the arules infrastructure for analyzing transaction data with R. In Advances in Data Analysis, 449–456. Heidelberg: Springer Berlin.

    Chapter  Google Scholar 

  • Hahsler, M., S. Chelluboina, K. Hornik, and C. Buchta. 2011. The arules R-package ecosystem: analyzing interesting patterns from large transaction data sets. Journal of Machine Learning Research 12 (Jun): 2021–2025.

    Google Scholar 

  • Hawley, A.H. 1986. Human ecology: A theoretical essay. Chicago: The University of Chicago Press.

    Google Scholar 

  • Hertz-Picciotto, I., and L. Delwiche. 2009. The rise in autism and the role of age at diagnosis. Epidemiology 20: 84–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holowaty, E.J., T.A. Norwood, S. Wanigaratne, J.J. Abellan, and L. Beale. 2010. Feasibility and utility of mapping disease risk at the neighbourhood level within a Canadian public health unit: An ecological study. International Journal of Health Geographics 10 (9): 21.

    Article  Google Scholar 

  • Horner-Devine, M.C., J.M. Silver, M.A. Leibold, B.J. Bohannan, R.K. Colwell, J.A. Fuhrman, J.L. Green, C.R. Kuske, J.B. Martiny, G. Muyzer, and L. Øvreås. 2007. A comparison of taxon co-occurrence patterns for macro-and microorganisms. Ecology 88 (6): 1345–1353.

    Article  PubMed  Google Scholar 

  • Huang, H., R. Tornero-Velez, and T.M. Barzyk. 2017. Associations between socio-demographic characteristics and chemical concentrations contributing to cumulative exposures in the United States. Journal of Exposure Science & Environmental Epidemiology 27 (6): 544–550.

    Article  CAS  Google Scholar 

  • Hu, Q., R.J. Noll, H. Li, A. Makarov, M. Hardman, and R. Graham Cooks. 2005. The Orbitrap: A new mass spectrometer. Journal of Mass Spectrometry 40 (4): 430–443.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, D.A., K.M. Somers, and H.H. Harvey. 1992. Null models and fish communities: Evidence of nonrandom patterns. American Naturalist 139: 930–951.

    Article  Google Scholar 

  • Jayjock, M.A., C.F. Chaisson, C.A. Franklin, S. Arnold, and P.S. Price. 2009. Using publicly available information to create exposure and risk-based ranking of chemicals used in the workplace and consumer products. Journal of Exposure Science & Environmental Epidemiology 19 (5): 515–524.

    Article  CAS  Google Scholar 

  • Judson, R., A. Richard, D.J. Dix, K. Houck, M. Martin, R. Kavlock, et al. 2009. The toxicity data landscape for environmental chemicals. Environmental Health Perspectives 117 (5): 685–695.

    Article  CAS  PubMed  Google Scholar 

  • Kapraun, D.F., J.F. Wambaugh, C.L. Ring, R. Tornero-Velez, and R.W. Setzer. 2017. A method for identifying prevalent chemical combinations in the U.S. population. Environmental Health Perspectives 125 (8): 087017.

    Article  PubMed  Google Scholar 

  • Kavlock, R., K. Chandler, K. Houck, S. Hunter, R. Judson, N. Kleinstreuer, T. Knudsen, M. Martin, S. Padilla, D. Reif, A. Richard, D. Rotroff, N. Sipes, and D. Dix. 2012. Update on EPA's ToxCast program: Providing high throughput decision support tools for chemical risk management. Chemical Research in Toxicology 25 (7): 1287–1302.

    Article  CAS  PubMed  Google Scholar 

  • Kellen, E., M.P. Zeegers, L. Bruckers, and F. Buntinx. 2008. The investigation of a geographical cluster of bladder cancer. Acta Clinica Belgica 63 (5): 313–320.

    Article  CAS  PubMed  Google Scholar 

  • Kelt, D.A., M.L. Taper, and P.L. Meserve. 1995. Assessing the impact of competition on community assembly: A case study using small mammals. Ecology 76: 1283–1296.

    Article  Google Scholar 

  • Krüger, R.F., C.J. de Carvalho, and P.B. Ribeiro. 2010. Assembly rules in muscid fly assemblages in the grasslands biome of southern Brazil. Neotropical Entomology 39 (3): 345–353.

    Article  PubMed  Google Scholar 

  • Lomolino, M.V. 1996. Investigating causality of nestedness of insular communities: Selective immigrations or extinctions? Journal of Biogeography 23 (5): 699–703.

    Article  Google Scholar 

  • MacArthur, R.H., and E.O. Wilson. 1967. The theory of island biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Mackay, D., D.M. Hughes, M.L. Romano, and M. Bonnell. 2014. The role of persistence in chemical evaluations. Integrated Environmental Assessment and Management 10: 588–594.

    Article  PubMed  Google Scholar 

  • Mailloux, R.J., M. Florian, Q. Chen, J. Yan, I. Petrov, M.C. Coughlan, M. Laziyan, D. Caldwell, M. Lalande, D. Patry, C. Gagnon, K. Sarafin, J. Truong, H.M. Chan, N. Ratnayake, N. Li, W.G. Willmore, and X. Jin. 2014. Exposure to a Northern Contaminant Mixture (NCM) alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats. PLoS One 9 (9): e106832.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manly, B.F. 1995. A note on the analysis of species co-occurrences. Ecology 76: 1109–1115.

    Article  Google Scholar 

  • McKenzie, R.D. 1924. The Ecological approach to the study of the human community. American Journal of Sociology. 30 (3): 287–301.

    Article  Google Scholar 

  • McLachlan, M.S., A. Kierkegaard, M. Radke, A. Sobek, A. Malmvärn, T. Alsberg, et al. 2014. Using model-based screening to help discover unknown environmental contaminants. Environmental Science & Technology 48: 7264–7271.

    Article  CAS  Google Scholar 

  • Meek, M., A.R. Boobis, K.M. Crofton, G. Heinemeyer, M. Van Raaij, and C. Vickers. 2011. Risk assessment of combined exposure to multiple chemicals: A WHO/IPCS framework. Regulatory Toxicology and Pharmacology 60: S1–S14.

    CAS  Google Scholar 

  • Meeker, J.D. 2012. Exposure to environmental endocrine disruptors and child development. Archives of Pediatrics & Adolescent Medicine 166: 952–958.

    Article  Google Scholar 

  • Miklós, I., and J. Podani. 2004. Randomization of presence-absence matrices: Comments and new algorithms. Ecology 85 (1): 86–92.

    Article  Google Scholar 

  • Mitchell, J., J.A. Arnot, O. Jolliet, P.G. Georgopoulos, S. Isukapalli, S. Dasgupta, et al. 2013. Comparison of modeling approaches to prioritize chemicals based on estimates of exposure and exposure potential. Science of the Total Environment 458–460: 555–567.

    Article  PubMed  Google Scholar 

  • Muir, D.C., and P.H. Howard. 2006. Are there other persistent organic pollutants? A challenge for environmental chemists. Environmental Science & Technology 40: 7157–7166.

    Article  CAS  Google Scholar 

  • Mumford, L. 1938. The culture of cities. Orlando: Harcourt Brace & Company.

    Google Scholar 

  • National Cooperative Highway Research Program (NCHRP). 2014. Strategic Issues Facing Transportation (Volume 4: Sustainability as an Organizing Principle). In NCHRP Report 750. Washington, DC: Transportation Research Board of the National Academies.

    Google Scholar 

  • National Health and Nutrition Examination Survey (NHANES). 2015a. http://www.cdc.gov/nchs/tutorials/environmental/orientation/overview/index.htm. Accessed 20 January 2018.

  • ———. 2015b. http://www.cdc.gov/nchs/nhanes/new_nhanes.htm. Accessed 20 January 2018.

  • National Research Council (NRC). 2000. Waste incineration and public health. Washington, DC: National Academy Press.

    Google Scholar 

  • Patel, C.J., J. Bhattacharya, and A.J. Butte. 2010. An Environment-Wide Association Study (EWAS) on type 2 diabetes mellitus. PlosS one 5 (5): e10746.

    Article  Google Scholar 

  • Patterson, B.D. 1990. On the temporal development of nested subset patterns of species composition. Oikos 59: 330–342.

    Article  Google Scholar 

  • Peng, Y.Q., Z.B. Duan, D.R. Yang, and J.Y. Rasplus. 2008. Co-occurrence of two Eupristina species on Ficus altissima in Xishuangbanna, SW China. Symbiosis (Rehovot) 45 (1): 9.

    Google Scholar 

  • Perrin, J.M., S.R. Bloom, and S.L. Gortmaker. 2007. The increase of childhood chronic conditions in the United States. JAMA 297 (24): 2755–2759.

    Article  CAS  PubMed  Google Scholar 

  • Pielou, D.P., and E.C. Pielou. 1968. Association among species of infrequent occurrence: the insect and spider fauna of Polyporus betulinus (Bulliard) Fries. Journal of Theoretical Biology 21 (2): 202–216.

    Article  CAS  PubMed  Google Scholar 

  • Qian, H., M. Chen, K.M. Kransler, and R.T. Zaleski. 2015. Assessment of chemical coexposure patterns based upon phthalate biomonitoring data within the 2007/2008 national health and nutrition examination survey. Journal of Exposure Science and Environmental Epidemiology 25: 249–255.

    Article  CAS  PubMed  Google Scholar 

  • R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Rodríguez-Gironés, M.A., and L. Santamaría. 2006. A new algorithm to calculate the nestedness temperature of presence–absence matrices. Journal of Biogeography 33 (5): 924–935.

    Article  Google Scholar 

  • Savitz, D.A. 1993. Epidemiologic studies of electric and magnetic fields and cancer: Strategies for extending knowledge. Environmental Health Perspectives 101 (Suppl 4): 83–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarzman, M.R., and M.P. Wilson. 2009. Science and regulation. New science for chemicals policy. Science 326: 1065–1066.

    Article  CAS  PubMed  Google Scholar 

  • Searles, E. 2002. Food and the making of modern inuit identities. Food & Foodways: History & Culture of Human Nourishment 10: 55–78.

    Article  Google Scholar 

  • Sepkoski, J.J. 1996. Competition in macroevolution: The double wedge revisited. In Evolutionary paleobiology, ed. D. Jablonski, D.H. Erwin, and J.H. Lipps, 211–255. Chicago, IL: Chicago University Press.

    Google Scholar 

  • Sobus, J.R., R.S. DeWoskin, Y.M. Tan, J.D. Pleil, M.B. Phillips, B.J. George, K. Christensen, D.M. Schreinemachers, M.A. Williams, E.A. Hubal, and S.W. Edwards. 2015. Uses of NHANES biomarker Data for chemical risk assessment: Trends, challenges, and opportunities. Environmental Health Perspectives 123 (10): 919–927.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stang, A., B. Kowall, C. Rusner, B. Trabert, F. Bray, J. Schüz, K.A. McGlynn, and O. Kuss. 2016. A novel method for identifying settings for well-motivated ecologic studies of cancer. International Journal of Cancer 138 (8): 1887–1893.

    Article  CAS  PubMed  Google Scholar 

  • Tice, R.R., C.P. Austin, R.J. Kavlock, and J.R. Bucher. 2013. Improving the human hazardcharacterization of chemicals: A Tox21 update. Environmental Health Perspectives 121 (7): 756–765.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tornero-Velez, R., P.P. Egeghy, and E.A. Cohen Hubal. 2012. Biogeographical analysis of chemical co-occurrence data to identify priorities for mixtures research. Risk Analysis 32 (2): 224–236.

    Article  PubMed  Google Scholar 

  • Tulve, N.S., P.A. Jones, M.G. Nishioka, R.C. Fortmann, C.W. Croghan, J.Y. Zhou, A. Fraser, C. Cavel, and W. Friedman. 2006. Pesticide measurements from the first national environmental health survey of child care centers using a multi-residue GC/MS analysis method. Environmental Science & Technology 40 (20): 6269–6274.

    Article  CAS  Google Scholar 

  • Ulrich, W., and N.J. Gotelli. 2013. Pattern detection in null model analysis. Oikos 122: 2–18.

    Article  Google Scholar 

  • Urban Land Institute. 2013. Intersections: Health and the built environment. Washington, D.C.: Urban Land Institute.

    Google Scholar 

  • U.S. EPA. 2014. T.S.C.A. Chemical substance inventory. Available: https://www.epa.gov/tsca-inventory. Accessed 20 January 2018.

  • Wambaugh, J.F., A. Wang, K.L. Dionisio, A. Frame, P. Egeghy, R. Judson, et al. 2014. High throughput heuristics for prioritizing human exposure to environmental chemicals. Environmental Science & Technology 48: 12760–12767.

    Article  CAS  Google Scholar 

  • Weschler, C.J. 2009. Changes in indoor pollutants since the 1950s. Atmospheric Environment 43: 153–169.

    Article  CAS  Google Scholar 

  • Wilson, M.P., and M.R. Schwarzman. 2009. Toward a new U.S. chemicals policy: Rebuilding the foundation to advance new science, green chemistry, and environmental health. Environmental Health Perspectives 117 (8): 1202–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yorita Christensen, K.L., C.K. Carrico, A.J. Sanyal, and C. Gennings. 2013. Multiple classes of environmental chemicals are associated with liver disease: Nhanes 2003-2004. International Journal of Hygiene and Environmental Health 216: 703–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the editors, Cynthia Rider and Jane Ellen Simmons, for their guidance and constructive feedback. Special thanks to Hongtai Huang and Dustin F. Kapraun for their thoughtful comments and suggestions. The views expressed in this paper are those of the authors and do not necessarily reflect views or policies of the U.S. Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogelio Tornero-Velez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tornero-Velez, R., Egeghy, P.P. (2018). Ecological Assembly of Chemical Mixtures. In: Rider, C., Simmons, J. (eds) Chemical Mixtures and Combined Chemical and Nonchemical Stressors. Springer, Cham. https://doi.org/10.1007/978-3-319-56234-6_6

Download citation

Publish with us

Policies and ethics