Skip to main content

Introduction to Environment and Exposome-Wide Association Studies: A Data-Driven Method to Identify Multiple Environmental Factors Associated with Phenotypes in Human Populations

  • Chapter
  • First Online:
Chemical Mixtures and Combined Chemical and Nonchemical Stressors

Abstract

It is a priority to identify multiple environmental factors, or mixtures, associated with disease phenotypes in human populations. However, high-throughput computational methods to identify mixtures that are important in human disease are lacking. This chapter describes the “environment-wide association study” (EWAS) analytic approach to identify a number of environmental exposures in human disease. With the advent of high-throughput environmental exposure information (e.g., exposome), methods such as EWAS will be instrumental to accelerate discovery in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartell, S.M., W.C. Griffith, and E.M. Faustman. 2004. Temporal error in biomarker-based mean exposure estimates for individuals. Journal of Exposure Analysis and Environmental Epidemiology 14: 173–179.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological 57: 289–300.

    Google Scholar 

  • Borrell, B. 2011. Epidemiology: Every bite you take. Nature 470: 320–322.

    Article  CAS  PubMed  Google Scholar 

  • Buck Louis, G.M., and R. Sundaram. 2012. Exposome: Time for transformative research. Statistics in Medicine 31: 2569–2575.

    Article  PubMed  Google Scholar 

  • Burdett, T., P.N. Hall, E. Hastings, L.A. Hindorff, H.A. Junkins, A.K. Klemm, J. Macarthur, T.A. Manolio, J. Morales, H. Parkinson and D. Welter. 2015. The NHGRI-EBI Catalog of published genome-wide association studies. Available at: www.ebi.ac.uk/gwas. Accessed 20 January 2018 version 1.

  • Butte, A.J., and I.S. Kohane. 2000. Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pacific Symposium on Biocomputing: 418–429.

    Google Scholar 

  • Butte, A.J., P. Tamayo, D. Slonim, T.R. Golub, and I.S. Kohane. 2000. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences of the United States of America 97: 12182–12186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for disease control and prevention (CDC). 2013. National Health and Nutrition Examination Survey [Online]. Atlanta: CDC. Available: http://www.cdc.gov/nchs/nhanes/. Accessed 1/1/2013 2013.

  • Davey Smith, G., and S. Ebrahim. 2003. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology 32: 1–22.

    Article  Google Scholar 

  • Efron, B. 2010. Large-Scale Inference. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Eisen, M.B., P.T. Spellman, P.O. Brown, and D. Botstein. 1998. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America 95: 14863–14868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallin, M.D., and W.H.L. Kao. 2011. Is ‘X’-WAS the future for all of epidemiology? Epidemiology 22: 457–459.

    Article  PubMed  Google Scholar 

  • Frayling, T.M., N.J. Timpson, M.N. Weedon, E. Zeggini, R.M. Freathy, C.M. Lindgren, J.R. Perry, K.S. Elliott, H. Lango, N.W. Rayner, B. Shields, L.W. Harries, J.C. Barrett, S. Ellard, C.J. Groves, B. Knight, A.M. Patch, A.R. Ness, S. Ebrahim, D.A. Lawlor, S.M. Ring, Y. Ben-Shlomo, M.R. Jarvelin, U. Sovio, A.J. Bennett, D. Melzer, L. Ferrucci, R.J. Loos, I. Barroso, N.J. Wareham, F. Karpe, K.R. Owen, L.R. Cardon, M. Walker, G.A. Hitman, C.N. Palmer, A.S. Doney, A.D. Morris, G.D. Smith, A.T. Hattersley, and M.I. Mccarthy. 2007. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316: 889–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein, D.B. 2009. Common genetic variation and human traits. The New England Journal of Medicine 360: 1696–1698.

    Article  CAS  PubMed  Google Scholar 

  • Greenland, S. 1990. Randomization, statistics, and causal inference. Epidemiology 1: 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Greenland, S., and H. Morgenstern. 2001. Confounding in health research. Annual Review of Public Health 22: 189–212.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, J., and A. Singleton. 2009. Genomewide association studies and human disease. The New England Journal of Medicine 360: 1759–1768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastie, T., R. Tibshirani, and J.H. Friedman. 2009. The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.

    Book  Google Scholar 

  • Heard, E., S. Tishkoff, J.A. Todd, M. Vidal, G.N.P. Wagner, J. Wang, D. Weigel, and R. Young. 2010. Ten years of genetics and genomics: What have we achieved and where are we heading? Nature Reviews. Genetics 11: 723–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper, L., A.R. Ness, and G.D. Smith. 2001. Antioxidant strategy for cardiovascular diseases. Lancet 357: 1705–1706.

    Article  CAS  PubMed  Google Scholar 

  • Horvath, S. 2011. Weighted network analysis: Applications in genomics and systems biology. New York: Springer.

    Book  Google Scholar 

  • International Hapmap Consortium. 2005. A haplotype map of the human genome. Nature 437: 1299–1320.

    Article  Google Scholar 

  • Ioannidis, J.P., E.E. Ntzani, T.A. Trikalinos, and D.G. Contopoulos-Ioannidis. 2001. Replication validity of genetic association studies. Nature Genetics 29: 306–309.

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis, J.P.A., E.Y. Loy, R. Poulton, and K.S. Chia. 2009. Researching genetic versus nongenetic determinants of disease: A comparison and proposed unification. Science Translational Medicine 1: 8.

    Article  Google Scholar 

  • Krzywinski, M., J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S.J. Jones, and M.A. Marra. 2009. Circos: An information aesthetic for comparative genomics. Genome Research 19: 1639–1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mak, H.C. 2011. Trends in computational biology – 2010. Nature Biotechnology 29: 45–45.

    PubMed  Google Scholar 

  • Manly, B.F. 2007. Randomization, bootstrap and monte carlo methods in biology. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Manolio, T.A., L.D. Brooks, and F.S. Collins. 2008. A HapMap harvest of insights into the genetics of common disease. The Journal of Clinical Investigation 118: 1590–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolio, T.A., F.S. Collins, N.J. Cox, D.B. Goldstein, L.A. Hindorff, D.J. Hunter, M.I. Mccarthy, E.M. Ramos, L.R. Cardon, A. Chakravarti, J.H. Cho, A.E. Guttmacher, A. Kong, L. Kruglyak, E. Mardis, C.N. Rotimi, M. Slatkin, D. Valle, A.S. Whittemore, M. Boehnke, A.G. Clark, E.E. Eichler, G. Gibson, J.L. Haines, T.F.C. Mackay, S.A. Mccarroll, and P.M. Visscher. 2009. Finding the missing heritability of complex diseases. Nature 461: 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mccarthy, M.I., G.R. Abecasis, L.R. Cardon, D.B. Goldstein, J. Little, J.P.A. Ioannidis, and J.N. Hirschhorn. 2008. Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nature Reviews. Genetics 9: 356–369.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G.W., and D.P. Jones. 2014. The nature of nurture: Refining the definition of the exposome. Toxicological Sciences 137: 1–2.

    Article  CAS  PubMed  Google Scholar 

  • NCI-NHGRI working group on replication in association studies. 2007. Replicating genotype-phenotype associations. Nature 447: 655–660.

    Article  Google Scholar 

  • Noble, W.S. 2009. How does multiple testing correction work? Nature Biotechnology 27: 1135–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omenn, G.S., G.E. Goodman, M.D. Thornquist, J. Balmes, M.R. Cullen, A. Glass, J.P. Keogh, F.L. Meyskens, B. Valanis, J.H. Williams, S. Barnhart, and S. Hammar. 1996. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. The New England Journal of Medicine 334: 1150–1155.

    Article  CAS  PubMed  Google Scholar 

  • Patel, C.J. 2017. Analytic complexity and challenges in identifying mixtures of exposures associated with phenotypes in the exposome era. Current Epidemiology Reports, January. Springer International Publishing, 4(1): 22–30.

    Google Scholar 

  • Patel, C.J., J. Bhattacharya, and A.J. Butte. 2010. An Environment-wide association study (EWAS) on type 2 diabetes mellitus. PLoS One 5: e10746.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, C.J., M.R. Cullen, J.P. Ioannidis, and A.J. Butte. 2012. Systematic evaluation of environmental factors: Persistent pollutants and nutrients correlated with serum lipid levels. International Journal of Epidemiology 41: 828–843.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, C.J., M.R. Cullen, J.P.A. Ioannidis, and D.H. Rehkopf. 2014. Systematic assessment of the correlation of household income with infectious, biochemical, physiological factors in the United States, 1999-2006. American Journal of Epidemiology 181: 171–179.

    Article  Google Scholar 

  • Patel, C.J., and J.P. Ioannidis. 2014a. Placing epidemiological results in the context of multiplicity and typical correlations of exposures. Journal of Epidemiology and Community Health 68: 1096–1100.

    Google Scholar 

  • ———. 2014b. Studying the elusive environment in large scale. Journal of the American Medical Association 311: 2173–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, C.J., and A.K. Manrai. 2015. Development of exposome globes to map out environment-wide associations. Pacific Symposium on Biocomputing: 231–242.

    Google Scholar 

  • Patel, Chirag J., Arjun K. Manrai, Erik Corona, and Isaac S. Kohane. 2016. Systematic correlation of environmental exposure and physiological and self-reported behaviour factors with leukocyte telomere length. International Journal of Epidemiology. https://doi.org/10.1093/ije/dyw043.

  • Patel, C.J., D.H. Rehkopf, J.T. Leppert, W.M. Bortz, M.R. Cullen, G. Chertow, and J.P. Ioannidis. 2013a. Systematic evaluation of environmental and behavioural factors associated with all-cause mortality in the United States National Health and Nutrition Examination Survey. International Journal of Epidemiology 42: 1795–1810.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, C.J., T. Yang, Z. Hu, Q. Wen, J. Sung, Y. El-Sayed, H. Cohen, J. Gould, D. Stevenson, G. Shaw, X. Ling, and A.J. Butte. 2013b. Investigation of maternal environmental exposures in association with self-reported preterm birth. Reproductive Toxicology 45C: 1–7.

    Google Scholar 

  • Pearson, T.A., and T.A. Manolio. 2008. How to interpret a genome-wide association study. Journal of the American Medical Association 299: 1335–1344.

    Article  CAS  PubMed  Google Scholar 

  • Westfall, Peter H., and S.S. Young. 1993. Resampling-based Multiple Testing. New York: Wiley.

    Google Scholar 

  • Peto, R., R. Doll, J.D. Buckley, and M.B. Sporn. 1981. Can dietary beta-carotene materially reduce human cancer rates? Nature 290: 201–208.

    Article  CAS  PubMed  Google Scholar 

  • Rappaport, S.M. 2012. Discovering environmental causes of disease. Journal of Epidemiology and Community Health 66: 99–102.

    Article  PubMed  Google Scholar 

  • Rappaport, S.M., D.K. Barupal, D. Wishart, P. Vineis, and A. Scalbert. 2014. The blood exposome and its role in discovering causes of disease. Environmental Health Perspectives 122 (8): 769–774.

    PubMed  PubMed Central  Google Scholar 

  • Rappaport, S.M., and M.T. Smith. 2010. Environment and disease risks. Science 330: 460–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman, K., S. Greenland, and T. Lash, eds. 2008. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Salonen, J.T., P. Uimari, J.M. Aalto, M. Pirskanen, J. Kaikkonen, B. Todorova, J. Hypponen, V.P. Korhonen, J. Asikainen, C. Devine, T.P. Tuomainen, J. Luedemann, M. Nauck, W. Kerner, R.H. Stephens, J.P. New, W.E. Ollier, J.M. Gibson, A. Payton, M.A. Horan, N. Pendleton, W. Mahoney, D. Meyre, J. Delplanque, P. Froguel, O. Luzzatto, B. Yakir, and A. Darvasi. 2007. Type 2 diabetes whole-genome association study in four populations: The DiaGen consortium. American Journal of Human Genetics 81: 338–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena, R., B.F. Voight, V. Lyssenko, N.P. Burtt, P.I. De Bakker, H. Chen, J.J. Roix, S. Kathiresan, J.N. Hirschhorn, M.J. Daly, T.E. Hughes, L. Groop, D. Altshuler, P. Almgren, J.C. Florez, J. Meyer, K. Ardlie, K. Bengtsson Bostrom, B. Isomaa, G. Lettre, U. Lindblad, H.N. Lyon, O. Melander, C. Newton-Cheh, P. Nilsson, M. Orho-Melander, L. Rastam, E.K. Speliotes, M.R. Taskinen, T. Tuomi, C. Guiducci, A. Berglund, J. Carlson, L. Gianniny, R. Hackett, L. Hall, J. Holmkvist, E. Laurila, M. Sjogren, M. Sterner, A. Surti, M. Svensson, R. Tewhey, B. Blumenstiel, M. Parkin, M. Defelice, R. Barry, W. Brodeur, J. Camarata, N. Chia, M. Fava, J. Gibbons, B. Handsaker, C. Healy, K. Nguyen, C. Gates, C. Sougnez, D. Gage, M. Nizzari, S.B. Gabriel, G.W. Chirn, Q. Ma, H. Parikh, D. Richardson, D. Ricke, and S. Purcell. 2007. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331–1336.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, D., and F. Collins. 2007. Medicine. environmental biology and human disease. Science 316: 695–696.

    Article  CAS  PubMed  Google Scholar 

  • Sladek, R., G. Rocheleau, J. Rung, C. Dina, L. Shen, D. Serre, P. Boutin, D. Vincent, A. Belisle, S. Hadjadj, B. Balkau, B. Heude, G. Charpentier, T.J. Hudson, A. Montpetit, A.V. Pshezhetsky, M. Prentki, B.I. Posner, D.J. Balding, D. Meyre, C. Polychronakos, and P. Froguel. 2007. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881–885.

    Article  CAS  PubMed  Google Scholar 

  • Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B: Methodological 58: 267–288.

    Google Scholar 

  • Todd, J.A. 2010. D’oh! genes and environment cause crohn’s disease. Cell 141: 1114–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzoulaki, I., C.J. Patel, T. Okamura, Q. Chan, I.J. Brown, K. Miura, H. Ueshima, L. Zhao, L. Van Horn, M.L. Daviglus, J. Stamler, A.J. Butte, J.P. Ioannidis, and P. Elliott. 2012. A nutrient-wide association study on blood pressure. Circulation 126: 2456–2464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vittinghoff, E., D. Glidden, S. Shiboski, and C. Mcculloch. 2005. Regression methods in biostatistics: Linear, logistic, survival, and repeated measures models. New York: Springer.

    Google Scholar 

  • Wetterstrand, K. 2011. DNA Sequencing Costs: Data from the NHGRI Large-Scale Genome Sequencing Program [Online]. Available: http://www.genome.gov/sequencingcosts. [Accessed 2011/08/12].

  • Wild, C.P. 2005. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiology, Biomarkers & Prevention 14: 1847–1850.

    Article  CAS  Google Scholar 

  • ———. 2012. The exposome: From concept to utility. International Journal of Epidemiology 41: 24–32.

    Article  PubMed  Google Scholar 

  • Wild, C.P., A. Scalbert, and Z. Herceg. 2013. Measuring the exposome: A powerful basis for evaluating environmental exposures and cancer risk. Environmental and Molecular Mutagenesis 54: 480–499.

    Article  CAS  PubMed  Google Scholar 

  • Witten, D.M., and R. Tibshirani. 2010. Survival analysis with high-dimensional covariates. Statistical Methods in Medical Research 19: 29–51.

    Article  PubMed  Google Scholar 

  • Zou, H., and T. Hastie. 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B: Statistical Methodology 67: 301–320.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chirag J. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, C.J. (2018). Introduction to Environment and Exposome-Wide Association Studies: A Data-Driven Method to Identify Multiple Environmental Factors Associated with Phenotypes in Human Populations. In: Rider, C., Simmons, J. (eds) Chemical Mixtures and Combined Chemical and Nonchemical Stressors. Springer, Cham. https://doi.org/10.1007/978-3-319-56234-6_5

Download citation

Publish with us

Policies and ethics