Skip to main content

Abstract

This chapter deals with the aspects of modeling complex exposures, highlighting the integration of various external and internal exposure models, following the exposome paradigm. Several approaches are investigated, relating either to the assessment of the overall chemical mixture as a single compound, or applying the compound-by-compound approach. Identifying the contribution of the various pathways leading to complex exposure requires the precise estimation of the various exposure mechanisms that integrate through the three main exposure routes (inhalation, oral and skin); hence, modeling environmental fate at different scales (such as regional, local or micro-environmental scale) for capturing both far field and near field exposure is essential. Integration of exposure through various pathways and routes occurs at the level of internal dosimetry. This is also reflected in the observed biomonitoring data, highlighting the need for integrated modeling tools that allow the functional link among exposure, internal dose and biomonitoring data. Extrapolation of exposure estimates from individual data to population exposure through advanced probabilistic techniques and agent-based models, as well as the latest advances in personal sensors for tracking activity and location are also presented. The importance of these aspects is highlighted in characteristic case studies regarding indoor air mixtures and multiple pesticide exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.epa.gov/risk/expobox/index.htm.

  2. 2.

    www.heals-eu.eu.

  3. 3.

    http://www.intera.cperi.certh.gr/auth/login.

References

  • Abraham, M.H. 1993. Application of solvation equations to chemical and biochemical processes. Pure and Applied Chemistry 65: 2503–2512.

    Article  CAS  Google Scholar 

  • Andra, S.S., P. Charisiadis, S. Karakitsios, D.A. Sarigiannis, and K.C. Makris. 2015. Passive exposures of children to volatile trihalomethanes during domestic cleaning activities of their parents. Environmental Research 136: 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Beaudouin, R., S. Micallef, and C. Brochot. 2010. A stochastic whole-body physiologically based pharmacokinetic model to assess the impact of inter-individual variability on tissue dosimetry over the human lifespan. Regulatory Toxicology and Pharmacology 57: 103–116.

    Article  CAS  PubMed  Google Scholar 

  • Benford, D.J., and D.R. Tennant. 1997. Food chemical risk assessment. In Food chemical risk analysis. London: Kluwer Academic Publishers.

    Google Scholar 

  • Bennett, D.H., M.D. Margni, T.E. Mckone, and O. Jolliet. 2002a. Intake fraction for multimedia pollutants: A tool for life cycle analysis and comparative risk assessment. Risk Analysis 22: 905–918.

    Article  PubMed  Google Scholar 

  • Bennett, D.H., T.E. Mckone, J.S. Evans, W.W. Nazaroff, M.D. Margni, O. Jolliet, and K.R. Smith. 2002b. Defining intake fraction. Environmental Science and Technology 36: 207a–211a.

    Article  CAS  PubMed  Google Scholar 

  • Bernillon, P., and F.Y. Bois. 2000. Statistical issues in toxicokinetic modeling: A Bayesian perspective. Environmental Health Perspectives 108: 883–893.

    Article  CAS  PubMed  Google Scholar 

  • Bird, S.L., S.G. Perry, S.L. Ray, and M.E. Teske. 2002. Evaluation of the AgDISP aerial spray algorithms in the AgDRIFT model. Environmental Toxicology and Chemistry 21: 672–681.

    Article  CAS  PubMed  Google Scholar 

  • Bogen, K.T., A.C. Cullen, H.C. Frey, and P.S. Price. 2009. Probabilistic exposure analysis for chemical risk characterization. Toxicological Sciences 109: 4–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bois, F.Y., M. Jamei, and H.J. Clewell. 2010. PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology 278: 256–267.

    Article  CAS  PubMed  Google Scholar 

  • CAPRI. 2012. Common agricultural policy regionalised impact modelling system. Available at http://www.capri-model.org/dokuwiki/doku.php [Online]. Available: http://www.capri-model.org/dokuwiki/doku.php 2012.

  • CROPLIFE. 2002. Croplife America CARES [Online]. Available: http://www.croplineamerica.org 2010.

  • De Nazelle, A., E. Seto, D. Donaire-Gonzalez, M. Mendez, J. Matamala, M.J. Nieuwenhuijsen, and M. Jerrett. 2013. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environmental Pollution 176: 92–99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Delmaar, J.E., M.V.D.Z. Park, and J.G.M. van Engelen. 2005. Consexpo 4.0: Consumer exposure and uptake models: Program manual. Bilthoven: National Institute for Public Health and the Environment (RIVM).

    Google Scholar 

  • Edginton, A.N., and L. Ritter. 2009. Predicting plasma concentrations of bisphenol a in children younger than 2 years of age after typical feeding schedules, using a physiologically based toxicokinetic model. Environmental Health Perspectives 117: 645–652.

    Article  CAS  PubMed  Google Scholar 

  • EFSA. 2011. Guidance of EFSA: Use of the EFSA comprehensive European food consumption database in exposure assessment. EFSA Journal 9: 2097–2131.

    Article  Google Scholar 

  • Egeghy, P.P., D.A. Vallero, and E.A. Cohen Hubal. 2011. Exposure-based prioritization of chemicals for risk assessment. Environmental Science & Policy 14: 950–964.

    Article  CAS  Google Scholar 

  • Eissing, T., L. Kuepfer, C. Becker, M. Block, K. Coboeken, T. Gaub, L. Goerlitz, J. Jaeger, R. Loosen, B. Ludewig, M. Meyer, C. Niederalt, M. Sevestre, H.U. Siegmund, J. Solodenko, K. Thelen, U. Telle, W. Weiss, T. Wendl, S. Willmann, and J. Lippert. 2011. A computational systems biology software platform for multiscale modeling and simulation: Integrating whole-body physiology, disease biology, and molecular reaction networks. Frontiers in Physiology 2: 1–10.

    Google Scholar 

  • EPA. 2012. EPI Suite™ V4.11. http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm

  • ERG. 2001. Final exposure and fate assessment screening tool peer review summary, EPA contract no. 68-W6-0022. Chantilly: Eastern Research Group, Inc.

    Google Scholar 

  • EUROSTAT. 2011. Population data [Online]. Available: http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home

  • Farrier, D. S., and M. D. Pandian. 2002. In: America, C. (ed.) CARES cumulative aggregate risk evaluation system: User guide. Washington, DC: CropLife America.

    Google Scholar 

  • Fryer, Μ., C. Collins, R. Colvile, H. Ferrier, and M. Nieuwenhuijsen. 2004. Evaluation of currently used exposure models to define a human exposure model for use in chemical risk assessment in the UK. London: Department of Environmental Science and Technology, Imperial College.

    Google Scholar 

  • Gao, C., R. Goind, and H.H. Tabak. 1992. Application of the group contribution method for predicting the toxicity of organic chemicals. Environmental Toxicology and Chemistry 11: 631–636.

    Article  CAS  Google Scholar 

  • Gelman, A., and D.B. Rubin. 1996. Markov chain Monte Carlo methods in biostatistics. Statistical Methods in Medical Research 5: 339–355.

    Article  CAS  PubMed  Google Scholar 

  • Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6: 721–741.

    Article  Google Scholar 

  • Georgopoulos, P.G., and P.J. Lioy. 2006. From a theoretical framework of human exposure and dose assessment to computational system implementation: The Modeling ENvironment for TOtal Risk Studies (MENTOR). Journal of Toxicology and Environmental Health – Part B: Critical Reviews 9: 457–483.

    Article  CAS  Google Scholar 

  • Georgopoulos, P.G., S.W. Wang, V.M. Vyas, Q. Sun, J. Burke, R. Vedantham, T. Mccurdy, and H. Ozkaynak. 2005. A source-to-dose assessment of population exposures to fine PM and ozone in Philadelphia, PA, during a summer 1999 episode. Journal of Exposure Analysis and Environmental Epidemiology 15: 439–457.

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos, P.G., S.W. Wang, I.G. Georgopoulos, M.J. Yonone-Lioy, and P.J. Lioy. 2006. Assessment of human exposure to copper: A case study using the NHEXAS database. Journal of Exposure Science and Environmental Epidemiology 16: 397–409.

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos, P.G., S. Balakrishnan, A. Roy, S. Isukapalli, A. Sasso, Y.-C. Chien, and C.P. Weisel. 2008a. A comparison of maximum likelihood estimation methods for inverse problem solutions employing PBPK modeling with biomarker data: Application to tetrachloroethylene. New Jersey, Rutgers, USA: CCL.

    Google Scholar 

  • Georgopoulos, P.G., A.F. Sasso, S.S. Isukapalli, P.J. Lioy, D.A. Vallero, M. Okino, and L. Reiter. 2008b. Reconstructing population exposures to environmental chemicals from biomarkers: Challenges and opportunities. Journal of Exposure Science and Environmental Epidemiology 19: 149–171.

    Article  PubMed  PubMed Central  Google Scholar 

  • Georgopoulos, P.G., S.W. Wang, Y.C. Yang, J. Xue, V.G. Zartarian, T. Mccurdy, and H. Ozkaynak. 2008c. Biologically based modeling of multimedia, multipathway, multiroute population exposures to arsenic. Journal of Exposure Science and Environmental Epidemiology 18: 462–476.

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos, P.G., C.J. Brinkerhoff, S. Isukapalli, M. Dellarco, P.J. Landrigan, and P.J. Lioy. 2014. A tiered framework for risk-relevant characterization and ranking of chemical exposures: Applications to the National Children’s Study (NCS). Risk Analysis 34: 1299–1316.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunier, R.B., M.E. Harnly, P. Reynolds, A. Hertz, and J. Von Behren. 2001. Agricultural pesticide use of California: Pesticide prioritization, use densities, and population distributions for a childhood cancer study. Environmental Health Perspectives 109: 1071–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddad, S., G. Charest-Tardif, R. Tardif, and K. Krishnan. 2000. Validation of a physiological modeling framework for simulating the toxicokinetics of chemicals in mixtures. Toxicology and Applied Pharmacology 167: 199–209.

    Article  CAS  PubMed  Google Scholar 

  • Hampshire. 2002. Hampshire Research Institute [Online]. Available: http://www.hampshire.org/ 2010.

  • Harper, D. 2004. Guidelines for good exposure assessment practice for human health effects of chemicals. Leicester: The Interdepartmental Group on Health Risks from Chemicals.

    Google Scholar 

  • Hayes, A.W. 2000. Principles and methods of toxicology. New York: Informa Healthcare USA, Inc.

    Google Scholar 

  • Hore, P., V. Zartarian, J. Xue, H. Özkaynak, S.W. Wang, Y.C. Yang, P.L. Chu, L. Sheldon, M. Robson, L. Needham, D. Barr, N. Freeman, P. Georgopoulos, and P.J. Lioy. 2006. Children’s residential exposure to chlorpyrifos: Application of CPPAES field measurements of chlorpyrifos and TCPy within MENTOR/SHEDS-pesticides model. Science of the Total Environment 366: 525–537.

    Article  CAS  PubMed  Google Scholar 

  • ICRP. 2002. Basic anatomical and physiological data for use in radiological protection: Reference values. In: Valentin, J. (ed.) The International Commission on Radiological Protection. Ottawa, Ontario, Canada.

    Google Scholar 

  • Isukapalli, S., A. Roy, and P. Georgopoulos. 2000. Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: Application to environmental and biological systems. Risk Analysis 20: 591–602.

    Article  CAS  PubMed  Google Scholar 

  • Jongeneelen, F.J., and W.F.T. Berge. 2011. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS excel; design of the model and comparison of predictions with experimental results. Annals of Occupational Hygiene 55: 841–864.

    CAS  PubMed  Google Scholar 

  • Judson, R.S., R.J. Kavlock, R.W. Setzer, E.A. Cohen Hubal, M.T. Martin, T.B. Knudsen, K.A. Houck, R.S. Thomas, B.A. Wetmore, and D.J. Dix. 2011. Estimating toxicity-related biological pathway altering doses for high-throughput chemical risk assessment. Chemical Research in Toxicology 24: 451–462.

    Article  CAS  PubMed  Google Scholar 

  • Kinerson, R.S. 1987. Modelling the fate and exposure of complex mixtures of chemicals in the aquatic environment. In Methods for assessning the effects of mixtures of chemicals, ed. G.C. Butler, V.B. Vouk, A.C. Upton, D.V. Parke, and S.C. Asher. New York: Wiley.

    Google Scholar 

  • Krauss, M., S. Schaller, S. Borchers, R. Findeisen, J. Lippert, and L. Kuepfer. 2012. Integrating cellular metabolism into a multiscale whole-body model. PLoS Computational Biology 8: e1002750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambe, J. 2002. The use of food consumption data in assessments of exposure to food chemicals including the application of probabilistic modelling. Proceedings of the Nutrition Society 61: 11–18.

    Article  PubMed  Google Scholar 

  • Lijzen, J., and M. Rikken. 2004. Euses version 2.0. Bilthoven: RIVM.

    Google Scholar 

  • Lioy, P.J., D. Vallero, G. Foley, P. Georgopoulos, J. Heiser, T. Watson, M. Reynolds, J. Daloia, S. Tong, and S. Isukapalli. 2007. A personal exposure study employing scripted activities and paths in conjunction with atmospheric releases of perfluorocarbon tracers in Manhattan, New York. Journal of Exposure Science and Environmental Epidemiology 17: 409–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay, D., S. Paterson, and W.Y. Shiu. 1992. Generic models for evaluating the regional fate of chemicals. Chemosphere 24: 695–717.

    Article  CAS  Google Scholar 

  • Mackay, D., E. Webster, I. Cousins, T. Cahill, K. Foster, and T. Gouin. 2001. An introduction to multimedia models. Ontario: Canadian Environmental Modelling Centre.

    Google Scholar 

  • Marshall, J.D., and W.W. Nazaroff. 2007. Intake fraction. In Exposure analysis, ed. R.W. Ott, A.C. Steinemann, and L.A. Wallace. Boca Raton: Taylor & Francis Group, LLC.

    Google Scholar 

  • Marshall, J.D., W.J. Riley, T.E. Mckone, and W.W. Nazaroff. 2003. Intake fraction of primary pollutants: Motor vehicle emissions in the South Coast Air Basin. Atmospheric Environment 37: 3455–3468.

    Article  CAS  Google Scholar 

  • Moles, C.G., P. Mendes, and J.R. Banga. 2003. Parameter estimation in biochemical pathways: A comparison of global optimization methods. Genome Research 13: 2467–2474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris, R.E., G. Yarwood, C.A. Emery, and B. Koo. 2004. Development and application of the CAMx regional one-atmospheric model to treat ozone, particulate matter, visibility, air toxics and mercury. Proceedings of the Air and Waste Management Association’s annual meeting and exhibition, 503–516.

    Google Scholar 

  • Mutshinda, C.M., I. Antai, and R.B. O’hara. 2008. A probabilistic approach to exposure risk assessment. Stochastic Environmental Research and Risk Assessment 22: 441–449.

    Article  Google Scholar 

  • Muzic, R.F., Jr., and B.T. Christian. 2006. Evaluation of objective functions for estimation of kinetic parameters. Medical Physics 33: 342–353.

    Article  PubMed  Google Scholar 

  • Nieuwenhuijsen, M.J. 2003. Introduction to exposure assessment. In Exposure assessment in occupational and environmental epidemiology. Oxford, UK: Oxford University Press.

    Chapter  Google Scholar 

  • Nieuwenhuijsen, M.J., D. Donaire-Gonzalez, M. Foraster, D. Martinez, and A. Cisneros. 2014. Using personal sensors to assess the exposome and acute health effects. International Journal of Environmental Research and Public Health 11: 7805–7819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozkaynak, H., J. Xue, V.G. Zartarian, G. Glen, and L. Smith. 2011. Modeled estimates of soil and dust ingestion rates for children. Risk Analysis 31: 592–608.

    Article  PubMed  Google Scholar 

  • Pankow, J.F. 1994. An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmospheric Environment 28: 185–188.

    Article  CAS  Google Scholar 

  • Payne, M.P., and L.C. Kenny. 2002. Comparison of models for the estimation of biological partition coefficients. Journal of Toxicology and Environmental Health Part A 65: 897–931.

    Article  CAS  PubMed  Google Scholar 

  • Peyret, T., and K. Krishnan. 2011. QSARS for PBPK modelling of environmental contaminants. SAR and QSAR in Environmental Research 22: 129–169.

    Article  CAS  PubMed  Google Scholar 

  • Pistocchi, A., and G. Bidoglio. 2009. Is it presently possible to assess the spatial distribution of agricultural pesticides in Europe? A screening study based on available data. EFSA PPR stakeholder workshop “Improved realism in soil risk assessment (IRIS) – How will pesticide risk assessment in soil be tackled tomorrow?”. Ispra, Italy.

    Google Scholar 

  • Pistocchi, A., D.A. Sarigiannis, and P. Vizcaino. 2010. Spatially explicit multimedia fate models for pollutants in Europe: State of the art and perspectives. Science of the Total Environment 408: 3817–3830.

    Article  CAS  PubMed  Google Scholar 

  • Price, K., and K. Krishnan. 2011. An integrated QSAR-PBPK modelling approach for predicting the inhalation toxicokinetics of mixtures of volatile organic chemicals in the rat. SAR and QSAR in Environmental Research 22: 107–128.

    Article  CAS  PubMed  Google Scholar 

  • Puzyn, T., J. Leszczynski, and M.T.D. Cronin. 2010. Recent advances in QSAR studies. New York: Springer Science+Business Media.

    Book  Google Scholar 

  • Rappaport, S.M., D.K. Barupal, D. Wishart, P. Vineis, and A. Scalbert. 2014. The blood exposome and its role in discovering causes of disease. Environmental Health Perspectives 122: 769–774.

    PubMed  PubMed Central  Google Scholar 

  • Robert, C., and G. Casella. 2004. Monte Carlo statistical methods. 2nd ed. New York: Springer.

    Book  Google Scholar 

  • Roy, A., C.P. Weisel, M. Gallo, and P. Georgopoulos. 1996. Studies of multiroute exposure/dose reconstruction using physiologically based pharmacokinetic models. Journal of Clean Technology, Environmental Toxicology and Occupational Medicine 5: 285–295.

    CAS  Google Scholar 

  • Royce, S.G., D. Mukherjee, T. Cai, S.S. Xu, J.A. Alexander, Z. Mi, L. Calderon, G. Mainelis, K. Lee, P.J. Lioy, T.D. Tetley, K.F. Chung, J. Zhang, and P.G. Georgopoulos. 2014. Modeling population exposures to silver nanoparticles present in consumer products. Journal of Nanoparticle Research 16: 1–38.

    Google Scholar 

  • Sabel, C.E., P. Boyle, G. Raab, M. Löytönen, and P. Maasilta. 2009. Modelling individual space-time exposure opportunities: A novel approach to unravelling the genetic or environment disease causation debate. Spatial and Spatio-Temporal Epidemiology 1: 85–94.

    Article  PubMed  Google Scholar 

  • Sarigiannis, D.A. 2014. Combined or multiple exposure to health stressors in indoor built environments. Copenhagen: WHO Regional Office for Europe.

    Google Scholar 

  • Sarigiannis, D.A., and A. Gotti. 2008. Biology-based dose-response models for health risk assessment of chemical mixtures. Fresenius Environmental Bulletin 17: 1439–1451.

    CAS  Google Scholar 

  • ———. 2014. New methods for personal monitoring of air pollution through the use of passive sensors during childhood. Pneumologia Pediatrica 54: 37–43.

    Google Scholar 

  • Sarigiannis, D.A., and U. Hansen. 2012. Considering the cumulative risk of mixtures of chemicals – A challenge for policy makers. Environmental Health: A Global Access Science Source 11: S18.

    Article  Google Scholar 

  • Sarigiannis, D., and S. Karakitsios. 2011. Perinatal exposure to bisphenol A: The route of administration makes the dose. Epidemiology 22: S172.

    Article  Google Scholar 

  • Sarigiannis, D.A., and S.P. Karakitsios. 2012. A dynamic physiology based pharmacokinetic model for assessing lifelong internal dose. AIChe 2012, October 28 – November 2 2012. Pittsburgh, PA.

    Google Scholar 

  • Sarigiannis, D., S. Karakitsios, and A. Gotti. 2009. Mechanistic full chain approach for ETS carcinogenicity impact assessment in the EU. Epidemiology 20: S88.

    Article  Google Scholar 

  • Sarigiannis, D., A. Gotti, and S. Karakitsios. 2011. A computational framework for aggregate and cumulative exposure assessment. Epidemiology 22: S96–S97.

    Article  Google Scholar 

  • Sarigiannis, D., A. Gotti, S. Karakitsios, P. Kontoroupis, and S. Nikolaki. 2012a. Intera platform: A tool for mechanistic risk assessment of indoor air pollutants. Epidemiology 23: 639.

    Google Scholar 

  • Sarigiannis, D.A., S.P. Karakitsios, M.P. Antonakopoulou, and A. Gotti. 2012b. Exposure analysis of accidental release of mercury from compact fluorescent lamps (CFLs). Science of the Total Environment 435–436: 306–315.

    Article  PubMed  Google Scholar 

  • Sarigiannis, D., P. Kontoroupis, E. Solomou, S. Nikolaki, and A. Karabelas. 2013. Inventory of pesticide emissions into the air in Europe. Atmospheric Environment 75: 6–14.

    Article  CAS  Google Scholar 

  • Sarigiannis, D., S. Karakitsios, A. Gotti, G. Loizou, J. Cherrie, R. Smolders, K. De Brouwere, K. Galea, K. Jones, E. Handakas, K. Papadaki, and A. Sleeuwenhoek. 2014a. Integra: From global scale contamination to tissue dose. Proceedings – 7th international congress on environmental modelling and software: Bold visions for environmental modeling, iEMSs 2014, 1001–1008.

    Google Scholar 

  • Sarigiannis, D.A., S.P. Karakitsios, M. Kermenidou, S. Nikolaki, D. Zikopoulos, S. Semelidis, A. Papagiannakis, and R. Tzimou. 2014b. Total exposure to airborne particulate matter in cities: The effect of biomass combustion. Science of the Total Environment 493: 795–805.

    Article  CAS  Google Scholar 

  • Sasso, A.F., S.S. Isukapalli, and P.G. Georgopoulos. 2010. A generalized physiologically-based toxicokinetic modeling system for chemical mixtures containing metals. Theoretical Biology and Medical Modelling 7: 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmutz, J., J. Wheeler, J. Grimwood, M. Dickson, J. Yang, C. Caoile, E. Bajorek, S. Black, Y.M. Chan, M. Denys, J. Escobar, D. Flowers, D. Fotopulos, C. Garcia, M. Gomez, E. Gonzales, L. Haydu, F. Lopez, L. Ramirez, J. Retterer, A. Rodriguez, S. Rogers, A. Salazar, M. Tsai, and R.M. Myers. 2004. Quality assessment of the human genome sequence. Nature 429: 365–368.

    Article  CAS  PubMed  Google Scholar 

  • Snyder, E.G., T.H. Watkins, P.A. Solomon, E.D. Thoma, R.W. Williams, G.S. Hagler, D. Shelow, D.A. Hindin, V.J. Kilaru, and P.W. Preuss. 2013. The changing paradigm of air pollution monitoring. Environmental Science & Technology 47: 11369–11377.

    Article  CAS  Google Scholar 

  • Stanek, E.J., 3rd, and E.J. Calabrese. 2000. Daily soil ingestion estimates for children at a superfund site. Risk Analysis 20: 627–635.

    Article  PubMed  Google Scholar 

  • Stanek, E.J., and E.J. Calabrese. 1995. Daily estimates of soil ingestion in children. Environmental Health Perspectives 103: 276–285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan, Y.M., K. Liao, R. Conolly, B. Blount, A. Mason, and H. Clewell. 2006. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform. Journal of Toxicology and Environmental Health – Part A: Current Issues 69: 1727–1756.

    Article  CAS  Google Scholar 

  • Teske, M.E., S.L. Bird, D.M. Esterly, T.B. Curbishley, S.L. Ray, and S.G. Perry. 2002. AgDRIFT: A model for estimating near-field spray drift from aerial applications. Environmental Toxicology and Chemistry 21: 659–671.

    Article  CAS  PubMed  Google Scholar 

  • Tulve, N.S., J.C. Suggs, T. Mccurdy, E.A. Cohen Hubal, and J. Moya. 2002. Frequency of mouthing behavior in young children. Journal of Exposure Analysis and Environmental Epidemiology 12: 259–264.

    Article  PubMed  Google Scholar 

  • USEPA. 2013. EPA – EXPO – BOX: A toolbox for exposure and risk assessors. Washington: U.S. Environmental Protection Agency.

    Google Scholar 

  • Valcke, M., and K. Krishnan. 2011. Evaluation of the impact of the exposure route on the human kinetic adjustment factor. Regulatory Toxicology and Pharmacology 59: 258–269.

    Article  CAS  PubMed  Google Scholar 

  • Van Veen, M.P., F. Fortezza, H.J.T. Bloemen, and J.J. Kliest. 1999. Indoor air exposure to volatile compounds emitted by paints: Experiment and model. Journal of Exposure Analysis and Environmental Epidemiology 9: 569–574.

    Article  PubMed  Google Scholar 

  • Vermeire, T.G., P. Van Der Poel, R.T.H. Van De Laar, and H. Roelfzema. 1993. Estimation of consumer exposure to chemicals: Application of simple models. Science of the Total Environment 136: 155–176.

    Article  CAS  Google Scholar 

  • Vermeire, T.G., D.T. Jager, B. Bussian, J. Devillers, K. Den Haan, B. Hansen, I. Lundberg, H. Niessen, S. Robertson, H. Tyle, and P.T.J. Van Der Zandt. 1997. European Union System for the Evaluation of Substances (EUSES). Principles and structure. Chemosphere 34: 1823–1836.

    Article  CAS  PubMed  Google Scholar 

  • Verner, M.A., M. Charbonneau, L. Lopez-Carrillo, and S. Haddad. 2008. Physiologically based pharmacokinetic modeling of persistent organic pollutants for lifetime exposure assessment: A new tool in breast cancer epidemiologic studies. Environmental Health Perspectives 116: 886–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weschler, C.J., and W.W. Nazaroff. 2008. Semivolatile organic compounds in indoor environments. Atmospheric Environment 42: 9018–9040.

    Article  CAS  Google Scholar 

  • ———. 2010. SVOC partitioning between the gas phase and settled dust indoors. Atmospheric Environment 44: 3609–3620.

    Google Scholar 

  • Wild, C.P. 2005. Complementing the genome with an “Exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiology Biomarkers and Prevention 14: 1847–1850.

    Article  CAS  Google Scholar 

  • Willmann, S., J. Lippert, M. Sevestre, J. Solodenko, F. Fois, and W. Schmitt. 2003. Pk-Sim®: A physiologically based pharmacokinetic ‘whole-body’ model. Drug Discovery Today: BIOSILICO 1: 121–124.

    CAS  Google Scholar 

  • Wilschut, A., W.F. Ten Berge, P.J. Robinson, and T.E. Mckone. 1995. Estimating skin permeation. The validation of five mathematical skin permeation models. Chemosphere 30: 1275–1296.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, R., A.V. Hill, and H. Glazer. 2013. Tools and tactics for operations managers (collection). Upper Saddle River, New Jersey, Pearson Education.

    Google Scholar 

  • Wormuth, M., M. Scheringer, M. Vollenweider, and K. Hungerbühler. 2006. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Analysis 26: 803–824.

    Article  PubMed  Google Scholar 

  • Yang, Y., X. Xu, and P.G. Georgopoulos. 2010. A Bayesian population PBPK model for multiroute chloroform exposure. Journal of Exposure Science and Environmental Epidemiology 20: 326–341.

    Article  CAS  PubMed  Google Scholar 

  • Zartarian, V.G., J. Xue, H. Özkaynak, G. Glen, C. Stallings, L. Smith, W. Dang, N. Cook, D. Aviado, S. Mostaghimi, and J. Chen. 2002. SHEDS-wood stochastic human exposure and dose simulation model for a wood preservative exposure scenario, technical manual: Using SHEDS-wood for the assessment of children’s exposure and dose from treated wood preservatives on playsets and residential decks. Washington: U.S. EPA.

    Google Scholar 

  • Zhang, H. 2004. A new nonlinear equation for the tissue/blood partition coefficients of neutral compounds. Journal of Pharmaceutical Sciences 93: 1595–1604.

    Article  CAS  PubMed  Google Scholar 

  • Zidek, J.V., G. Shaddick, R. White, J. Meloche, and C. Chatfield. 2005. Using a probabilistic model (pCNEM) to estimate personal exposure to air pollution. Environmetrics 16: 481–493.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimosthenis A. Sarigiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarigiannis, D.A., Karakitsios, S.P. (2018). Modeling Complex Exposures. In: Rider, C., Simmons, J. (eds) Chemical Mixtures and Combined Chemical and Nonchemical Stressors. Springer, Cham. https://doi.org/10.1007/978-3-319-56234-6_4

Download citation

Publish with us

Policies and ethics