Skip to main content

Biomonitoring to Assess Exposures to Mixtures of Environmental Chemicals

  • Chapter
  • First Online:

Abstract

In modern societies, humans may be exposed to a wide spectrum of environmental stressors, including mixtures of anthropogenic chemicals. Furthermore, because human exposure does not occur under controlled conditions of dose-response evaluations in animal studies, exposure assessment is complex. Three main tools have been used to assess human exposures: history/questionnaire information, environmental monitoring, and biomonitoring (i.e., measuring concentrations of the chemicals or their metabolites or adducts in human specimens). In this chapter, we will discuss the suitability of biomonitoring data for evaluating exposures to mixtures of environmental chemicals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abballe, A., T.J. Ballard, E. Dellatte, et al. 2008. Persistent environmental contaminants in human milk: Concentrations and time trends in Italy. Chemosphere 73: S220–S227.

    Article  CAS  PubMed  Google Scholar 

  • Ackerman, J.M., R.E. Dodson, C.L. Engel, et al. 2014. Temporal variability of urinary di(2-ethylhexyl) phthalate metabolites during a dietary intervention study. Journal of Exposure Science and Environmental Epidemiology 24: 595–601.

    Article  CAS  PubMed  Google Scholar 

  • Adetona, O., K. Horton, A. Sjodin, et al. 2013. Concentrations of select persistent organic pollutants across pregnancy trimesters in maternal and in cord serum in Trujillo, Peru. Chemosphere 91: 1426–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adibi, J.J., R.M. Whyatt, P.L. Williams, et al. 2008. Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environmental Health Perspectives 116: 467–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albertini, R., M. Bird, N. Doerrer, et al. 2006. The use of biomonitoring data in exposure and human health risk assessments. Environmental Health Perspectives 114: 1755–1762.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angerer, J., M.G. Bird, T.A. Burke, et al. 2006. Strategic biomonitoring initiatives: Moving the science forward. Toxicological Sciences 93: 3–10.

    Article  CAS  PubMed  Google Scholar 

  • Angerer, J., U. Ewers, and M. Wilhelm. 2007. Human biomonitoring: State of the art. International Journal of Hygiene and Environmental Health 210: 201–228.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, S.M., J. Angerer, P.J. Boogaard, et al. 2013. The use of biomonitoring data in exposure and human health risk assessment: Benzene case study. Critical Reviews in Toxicology 43: 119–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelsson, J., L. Rylander, A. Rignell-Hydbom, et al. 2015. Phthalate exposure and reproductive parameters in young men from the general Swedish population. Environment International 85: 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Aylward, L.L., S.M. Hays, R. Smolders, et al. 2014. Sources of variability in biomarker concentrations. Journal of Toxicology and Environmental Health, Part B 17: 45–61.

    Article  CAS  Google Scholar 

  • Aylward, L.L., S.M. Hays, and A. Zidek. 2017. Variation in urinary spot sample, 24 h samples, and longer-term average urinary concentrations of shortlived environmental chemicals: implications for exposure assessment and reverse dosimetry. Journal of Exposure Science and Environmental Epidemiology 27 (6): 582–590.

    Article  CAS  PubMed  Google Scholar 

  • Baird, D.D., T.M. Saldana, P.A. Nepomnaschy, et al. 2010. Within-person variability in urinary phthalate metabolite concentrations: Measurements from specimens after long-term frozen storage. Journal of Exposure Science and Environmental Epidemiology 20: 169–175.

    Article  CAS  PubMed  Google Scholar 

  • Barr, D.B., R. Bravo, G. Weerasekera, et al. 2004. Concentrations of dialkyl phosphate metabolites of organophosphorus pesticides in the US population. Environmental Health Perspectives 112: 186–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett, E.S., S. Sathyanarayana, S. Janssen, et al. 2014. Environmental health attitudes and behaviors: Findings from a large pregnancy cohort study. European Journal of Obstetrics & Gynecology and Reproductive Biology 176: 119–125.

    Article  Google Scholar 

  • Bartolome, M., J.J. Ramos, F. Cutanda, et al. 2015. Urinary polycyclic aromatic hydrocarbon metabolites levels in a representative sample of the Spanish adult population: The BIOAMBIENT.ES project. Chemosphere 135: 436–446.

    Article  CAS  PubMed  Google Scholar 

  • Becker, K., T. Goen, M. Seiwert, et al. 2009. GerES IV: Phthalate metabolites and bisphenol A in urine of German children. International Journal of Hygiene and Environmental Health 212: 685–692.

    Article  CAS  PubMed  Google Scholar 

  • Bell, S.M., and S.W. Edwards. 2015. Identification and prioritization of relationships between environmental stressors and adverse human health impacts. Environmental Health Perspectives 123: 1193–1199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berlin, C.M., B.L. Crase, P. Furst, et al. 2005. Methodologic considerations for improving and facilitating human milk research. Journal of Toxicology and Environmental Health, Part A 68: 1803–1823.

    Article  CAS  Google Scholar 

  • Berman, T., Y. Amitai, S. Almog, et al. 2012. Human biomonitoring in Israel: Past, present, future. International Journal of Hygiene and Environmental Health 215: 138–141.

    Article  CAS  PubMed  Google Scholar 

  • Bertelsen, R.J., S.M. Engel, T.A. Jusko, et al. 2014. Reliability of triclosan measures in repeated urine samples from Norwegian pregnant women. Journal of Exposure Science and Environmental Epidemiology 24: 517–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birnbaum, L.S. 2010. Applying research to public health questions: Biologically relevant exposures. Environmental Health Perspectives 118: A152.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradman, A., K. Kogut, E.A. Eisen, et al. 2013. Variability of organophosphorous pesticide metabolite levels in spot and 24-hr urine samples collected from young children during 1 week. Environmental Health Perspectives 121: 118–124.

    Article  PubMed  Google Scholar 

  • Braun, J.M., A.E. Kalkbrenner, A.M. Calafat, et al. 2011. Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environmental Health Perspectives 119: 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Braun, J.M., K.W. Smith, P.L. Williams, et al. 2012. Variability of urinary phthalate metabolite and bisphenol A concentrations before and during pregnancy. Environmental Health Perspectives 120: 739–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, H., W. Zheng, Y.B. Xiang, et al. 2007. Dietary patterns and their correlates among middle-aged and elderly Chinese men: A report from the Shanghai Men’s Health Study. British Journal of Nutrition 98: 1006–1013.

    Article  CAS  PubMed  Google Scholar 

  • Calafat, A.M. 2012. The U.S. National Health and Nutrition Examination Survey and human exposure to environmental chemicals. International Journal of Hygiene and Environmental Health 215: 99–101.

    Article  PubMed  Google Scholar 

  • Calafat, A.M., and L.L. Needham. 2009. What additional factors beyond state-of-the-art analytical methods are needed for optimal generation and interpretation of biomonitoring data? Environmental Health Perspectives 117: 1481–1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calafat, A.M., L.L. Needham, M.J. Silva, et al. 2004. Exposure to di-(2-ethylhexyl) phthalate among premature neonates in a neonatal intensive care unit. Pediatrics 113: e429–e434.

    Article  PubMed  Google Scholar 

  • Calafat, A.M., X. Ye, M.J. Silva, et al. 2006. Human exposure assessment to environmental chemicals using biomonitoring. International Journal of Andrology 29: 166–171.

    Article  CAS  PubMed  Google Scholar 

  • Calafat, A.M., J. Weuve, X.Y. Ye, et al. 2009. Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants. Environmental Health Perspectives 117: 639–644.

    Article  CAS  PubMed  Google Scholar 

  • Calafat, A.M., L.Y. Wong, M.J. Silva, et al. 2011. Selecting adequate exposure biomarkers of diisononyl and diisodecyl phthalates: Data from the 2005-2006 National Health and Nutrition Examination Survey. Environmental Health Perspectives 119: 50–55.

    Article  CAS  PubMed  Google Scholar 

  • Calafat, A.M., M.P. Longnecker, H.M. Koch, et al. 2015. Optimal exposure biomarkers for nonpersistent chemicals in environmental epidemiology. Environmental Health Perspectives 123: A166–A168.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cantonwine, D.E., J.F. Cordero, L.O. Rivera-Gonzalez, et al. 2014. Urinary phthalate metabolite concentrations among pregnant women in Northern Puerto Rico: Distribution, temporal variability, and predictors. Environment International 62: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Carlin, D.J., C.V. Rider, R. Woychik, et al. 2013. Unraveling the health effects of environmental mixtures: An NIEHS priority. Environmental Health Perspectives 121: A6–A8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Casteleyn, L., B. Dumez, K. Becker, et al. 2015. A pilot study on the feasibility of European harmonized Human Biomonitoring: Strategies towards a common approach, challenges and opportunities. Environmental Research 141: 3–14.

    Article  CAS  PubMed  Google Scholar 

  • CDC. 2009. Fourth National Report on Human Exposure to Environmental Chemicals, Centers for Disease Control and Prevention; National Center for Environmental Health; Division of Laboratory Sciences, Atlanta. https://www.cdc.gov/exposurereport/pdf/fourthreport.pdf. Accessed 9 Dec 2017.

  • ———. 2011. NHANES environmental chemical data tutorial. National Center for Health Statistics. http://www.cdc.gov/nchs/tutorials/environmental/index.htm. Accessed 9 Dec 2017.

  • ———. 2017. Fourth National Report on Human Exposure to Environmental Chemicals. Updated Tables, January 2017, Centers for Disease Control and Prevention; National Center for Environmental Health; Division of Laboratory Sciences, Atlanta. https://www.cdc.gov/exposurereport/. Accessed 9 Dec 2017.

  • Cerna, M., A. Krskova, M. Cejchanova, et al. 2012. Human biomonitoring in the Czech Republic: An overview. International Journal of Hygiene and Environmental Health 215: 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Černá, M., V. Puklová, L. Hanzlíková, et al. 2017. 25 years of HBM in the Czech Republic. International Journal of Hygiene and Environmental Health 220 (2): 3–5.

    Article  PubMed  Google Scholar 

  • Colditz, G.A., and S.E. Hankinson. 2005. The Nurses’ Health Study: Lifestyle and health among women. Nature Reviews Cancer 5: 388–396.

    Article  CAS  PubMed  Google Scholar 

  • Colles, A., G. Koppen, V. Hanot, et al. 2008. Fourth WHO-coordinated survey of human milk for persistent organic pollutants (POPs): Belgian results. Chemosphere 73: 907–914.

    Article  CAS  PubMed  Google Scholar 

  • CPSC. 2017. Prohibition of children’s toys and child care articles containing specified phthalates. Federal Register 82: 49938–49982.

    Google Scholar 

  • Croes, K., A. Colles, G. Koppen, et al. 2012. Persistent organic pollutants (POPs) in human milk: A biomonitoring study in rural areas of Flanders (Belgium). Chemosphere 89: 988–994.

    Article  CAS  PubMed  Google Scholar 

  • Cupples, L.A., H.T. Arruda, E.J. Benjamin, et al. 2007. The Framingham Heart Study 100K SNP genome-wide association study resource: Overview of 17 phenotype working group reports. BMC Medical Genetics 8 (Suppl 1): S1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dales, R.E., L.M. Kauri, and S. Cakmak. 2018. The associations between phthalate exposure and insulin resistance, beta-cell function and blood glucose control in a population-based sample. Science of The Total Environment 612: 1287–1292.

    Article  CAS  PubMed  Google Scholar 

  • Darnerud, P.O., S. Lignell, M. Aune, et al. 2015. Time trends of polybrominated diphenylether (PBDE) congeners in serum of Swedish mothers and comparisons to breast milk data. Environmental Research 138: 352–360.

    Article  CAS  PubMed  Google Scholar 

  • Dewalque, L., C. Pirard, S. Vandepaer, et al. 2015. Temporal variability of urinary concentrations of phthalate metabolites, parabens and benzophenone-3 in a Belgian adult population. Environmental Research 142: 414–423.

    Article  CAS  PubMed  Google Scholar 

  • Duggan, A., G. Charnley, W. Chen, et al. 2003. Di-alkyl phosphate biomonitoring data: Assessing cumulative exposure to organophosphate pesticides. Regulatory Toxicology and Pharmacology 37: 382–395.

    Article  CAS  PubMed  Google Scholar 

  • Duty, S.M., K. Mendonca, R. Hauser, et al. 2013. Potential sources of bisphenol A in the neonatal intensive care unit. Pediatrics 131: 483–489.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel, L.S., J.P. Buckley, G. Yang, et al. 2014. Predictors and variability of repeat measurements of urinary phenols and parabens in a cohort of Shanghai women and men. Environmental Health Perspectives 122: 733–740.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, J., E. Nyberg, A. Bignert, et al. 2013. Temporal trends of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls in mothers’ milk from Sweden, 1972-2011. Environment International 60: 224–231.

    Article  PubMed  CAS  Google Scholar 

  • Fenton, S.E., M. Condon, A.S. Ettinger, et al. 2005. Collection and use of exposure data from human milk biomonitoring in the United States. Journal of Toxicology and Environmental Health, Part A 68: 1691–1712.

    Article  CAS  Google Scholar 

  • Ferguson, K.K., T.F. McElrath, Y.A. Ko, et al. 2014. Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth. Environment International 70: 118–124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher, M., T.E. Arbuckle, R. Mallick, et al. 2015. Bisphenol A and phthalate metabolite urinary concentrations: Daily and across pregnancy variability. Journal of Exposure Science and Environmental Epidemiology 25: 231–239.

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen, H., L. Aksglaede, K. Sorensen, et al. 2011. Urinary excretion of phthalate metabolites in 129 healthy Danish children and adolescents: Estimation of daily phthalate intake. Environmental Research 111: 656–663.

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen, H., S.K. Kranich, N. Jorgensen, et al. 2013. Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: Considerations for epidemiological studies. Environmental Science & Technology 47: 958–967.

    Article  CAS  Google Scholar 

  • Frery, N., S. Vandentorren, A. Etchevers, et al. 2012. Highlights of recent studies and future plans for the French human biomonitoring (HBM) programme. International Journal of Hygiene and Environmental Health 215: 127–132.

    Article  CAS  PubMed  Google Scholar 

  • Fromme, H., G. Bolte, H.M. Koch, et al. 2007. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. International Journal of Hygiene and Environmental Health 210: 21–33.

    Article  CAS  PubMed  Google Scholar 

  • Geens, T., L. Bruckers, A. Covaci, et al. 2014. Determinants of bisphenol A and phthalate metabolites in urine of Flemish adolescents. Environmental Research 134: 110–117.

    Article  CAS  PubMed  Google Scholar 

  • Geens, T., A.C. Dirtu, E. Dirinck, et al. 2015. Daily intake of bisphenol A and triclosan and their association with anthropometric data, thyroid hormones and weight loss in overweight and obese individuals. Environment International 76: 98–105.

    Article  CAS  PubMed  Google Scholar 

  • Glynn, A., U. Berger, A. Bignert, et al. 2012. Perfluorinated alkyl acids in blood serum from primiparous women in Sweden: Serial sampling during pregnancy and nursing, and temporal trends 1996-2010. Environmental Science & Technology 46: 9071–9079.

    Article  CAS  Google Scholar 

  • Green, R., R. Hauser, A.M. Calafat, et al. 2005. Use of di(2-ethylhexyl) phthalate-containing medical products and urinary levels of mono(2-ethylhexyl) phthalate in neonatal intensive care unit infants. Environmental Health Perspectives 113: 1222–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidry, V.T., M.P. Longnecker, H. Aase, et al. 2015. Measurement of total and free urinary phenol and paraben concentrations over the course of pregnancy: Assessing reliability and contamination of specimens in the norwegian mother and child cohort study. Environmental Health Perspectives 123: 705–711.

    PubMed  PubMed Central  Google Scholar 

  • Guo, Y., J. Weck, R. Sundaram, et al. 2014. Urinary concentrations of phthalates in couples planning pregnancy and its association with 8-hydroxy-2’-deoxyguanosine, a biomarker of oxidative stress: Longitudinal Investigation of Fertility and the Environment Study. Environmental Science & Technology 48: 9804–9811.

    Article  CAS  Google Scholar 

  • Guxens, M., F. Ballester, M. Espada, et al. 2012. Cohort profile: The INMA--INfancia y Medio Ambiente--(environment and childhood) project. International Journal of Epidemiology 41: 930–940.

    Article  PubMed  Google Scholar 

  • Ha, M., H.J. Kwon, J.H. Leem, et al. 2014. Korean Environmental Health Survey in Children and Adolescents (KorEHS-C): Survey design and pilot study results on selected exposure biomarkers. International Journal of Hygiene and Environmental Health 217: 260–270.

    Article  CAS  PubMed  Google Scholar 

  • Haines, D.A., and J. Murray. 2012. Human biomonitoring of environmental chemicals--early results of the 2007-2009 Canadian Health Measures Survey for males and females. International Journal of Hygiene and Environmental Health 215: 133–137.

    Article  CAS  PubMed  Google Scholar 

  • Hauser, R., J.D. Meeker, S. Park, et al. 2004. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environmental Health Perspectives 112: 1734–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hays, J., J.R. Hunt, F.A. Hubbell, et al. 2003. The Women’s Health Initiative recruitment methods and results. Annals of Epidemiology 13: S18–S77.

    Article  PubMed  Google Scholar 

  • Health Canada. 2017. Fourth report on human biomonitoring of environmental chemicals in Canada: results of the Canadian Health Measures Survey Cycle 4 (2014–2015), Health Canada, Ottawa. https://www.canada.ca/en/health-canada/services/environmental-workplacehealth/reports-publications/environmental-contaminants/fourth-report-human-biomonitoring-environmental-chemicals-canada.html. Accessed 9 Dec 2017.

  • Heffernan, A.L., L.L. Aylward, A.J. Samidurai, et al. 2014. Short term variability in urinary bisphenol A in Australian children. Environment International 68: 139–143.

    Article  CAS  PubMed  Google Scholar 

  • Hertz-Picciotto, I., L.A. Croen, R. Hansen, et al. 2006. The CHARGE study: An epidemiologic investigation of genetic and environmental factors contributing to autism. Environmental Health Perspectives 114: 1119–1125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohenblum, P., P. Steinbichl, W. Raffesberg, et al. 2012. Pollution gets personal! A first population-based human biomonitoring study in Austria. International Journal of Hygiene and Environmental Health 215: 176–179.

    Article  CAS  PubMed  Google Scholar 

  • Hooper, K., J. She, M. Sharp, et al. 2007. Depuration of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in breast milk from California first-time mothers (primiparae). Environmental Health Perspectives 115: 1271–1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppin, J.A., J.W. Brock, B.J. Davis, et al. 2002. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environmental Health Perspectives 110: 515–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, P.-C., C.-H. Tsai, W.-Y. Liang, et al. 2016. Early phthalates exposure in pregnant women is associated with alteration of thyroid hormones. Plos One 11 (7): e0159398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huygh, J., K. Clotman, G. Malarvannan, et al. 2015. Considerable exposure to the endocrine disrupting chemicals phthalates and bisphenol-A in intensive care unit (ICU) patients. Environment International 81: 64–72.

    Article  CAS  PubMed  Google Scholar 

  • Irvin, E.A., A.M. Calafat, M.J. Silva, et al. 2010. An estimate of phthalate exposure among pregnant women living in Trujillo, Peru. Chemosphere 80: 1301–1307.

    Article  CAS  PubMed  Google Scholar 

  • James-Todd, T., R. Stahlhut, J.D. Meeker, et al. 2012. Urinary phthalate metabolite concentrations and diabetes among women in the National Health and Nutrition Examination Survey (NHANES) 2001-2008. Environmental Health Perspectives 120: 1307–1313.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong, S.W., C.K. Lee, C.H. Suh, et al. 2014. Blood lead concentration and related factors in Korea from the 2008 National Survey for Environmental Pollutants in the Human Body. International Journal of Hygiene and Environmental Health 217: 871–877.

    Article  CAS  PubMed  Google Scholar 

  • Jusko, T.A., P.A. Shaw, C.A. Snijder, et al. 2014. Reproducibility of urinary bisphenol A concentrations measured during pregnancy in the Generation R Study. Journal of Exposure Science and Environmental Epidemiology 24: 532–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasper-Sonnenberg, M., H.M. Koch, J. Wittsiepe, et al. 2012. Levels of phthalate metabolites in urine among mother-child-pairs – results from the Duisburg birth cohort study, Germany. International Journal of Hygiene and Environmental Health 215: 373–382.

    Article  CAS  PubMed  Google Scholar 

  • Kasper-Sonnenberg, M., J. Wittsiepe, K. Wald, et al. 2017. Pre-pubertal exposure with phthalates and bisphenol A and pubertal development. Plos One 12 (11): e0187922.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato, K., L.Y. Wong, A.M. Chen, et al. 2014. Changes in serum concentrations of maternal poly- and perfluoroalkyl substances over the course of pregnancy and predictors of exposure in a multiethnic cohort of Cincinnati, Ohio pregnant women during 2003-2006. Environmental Science & Technology 48: 9600–9608.

    Article  CAS  Google Scholar 

  • Kawamoto, T., H. Nitta, K. Murata, et al. 2014. Rationale and study design of the Japan environment and children’s study (JECS). BMC Public Health 14: 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, J.H., and Y.C. Hong. 2014. HSP70-hom gene polymorphisms modify the association of diethylhexyl phthalates with insulin resistance. Environmental and Molecular Mutagenesis 55: 727–734.

    Article  CAS  PubMed  Google Scholar 

  • Kim, B.M., M. Ha, H.S. Park, et al. 2009. The mothers and children’s environmental health (MOCEH) study. European Journal of Epidemiology 24: 573–583.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, J.H., H.Y. Park, S. Bae, et al. 2013. Diethylhexyl phthalates is associated with insulin resistance via oxidative stress in the elderly: A panel study. Plos One 8: e71392.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch, H.M., and J. Angerer. 2007. Di-iso-nonylphthalate (DINP) metabolites in human urine after a single oral dose of deuterium-labelled DINP. International Journal of Hygiene and Environmental Health 210: 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Koch, H.M., and A.M. Calafat. 2009. Human body burdens of chemicals used in plastic manufacture. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364: 2063–2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, H.M., H.M. Bolt, and J. Angerer. 2004. Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Archives of Toxicology 78: 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Koch, H.M., H.M. Bolt, R. Preuss, et al. 2005. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Archives of Toxicology 79: 367–376.

    Article  CAS  PubMed  Google Scholar 

  • Koch, H.M., K. Becker, M. Wittassek, et al. 2007. Di-n-butylphthalate and butylbenzylphthalate – urinary metabolite levels and estimated daily intakes: Pilot study for the German Environmental Survey on children. Journal of Exposure Science and Environmental Epidemiology 17: 378–387.

    Article  CAS  PubMed  Google Scholar 

  • Koch, H.M., K.L.Y. Christensen, V. Harth, et al. 2012. Di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) metabolism in a human volunteer after single oral doses. Archives of Toxicology 86: 1829–1839.

    Article  CAS  PubMed  Google Scholar 

  • Koch, H.M., A. Schutze, C. Palmke, et al. 2013. Metabolism of the plasticizer and phthalate substitute diisononyl-cyclohexane-1,2-dicarboxylate (DINCH) in humans after single oral doses. Archives of Toxicology 87: 799–806.

    Article  CAS  PubMed  Google Scholar 

  • Koch, H.M., L.L. Aylward, S.M. Hays, et al. 2014. Inter- and intra-individual variation in urinary biomarker concentrations over a 6-day sampling period. Part 2: Personal care product ingredients. Toxicology Letters 231: 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Kolossa-Gehring, M., K. Becker, A. Conrad, et al. 2012. Environmental surveys, specimen bank and health related environmental monitoring in Germany. International Journal of Hygiene and Environmental Health 215: 120–126.

    Article  CAS  PubMed  Google Scholar 

  • Konishi, Y., K. Kuwabara, and S. Hori. 2001. Continuous surveillance of organochlorine compounds in human breast milk from 1972 to 1998 in Osaka, Japan. Archives of Environmental Contamination and Toxicology 40: 571–578.

    Article  CAS  PubMed  Google Scholar 

  • Kunisue, T., M. Muraoka, M. Ohtake, et al. 2006. Contamination status of persistent organochlorines in human breast milk from Japan: Recent levels and temporal trend. Chemosphere 64: 1601–1608.

    Article  CAS  PubMed  Google Scholar 

  • La Corte, E., and S. Wuttke. 2012. The First Nations Biomonitoring Initiative-FNBI. International Journal of Hygiene and Environmental Health 215: 168–171.

    Article  PubMed  Google Scholar 

  • LaKind, J.S., C.M. Berlin, and D.Q. Naiman. 2001. Infant exposure to chemicals in breast milk in the United States: What we need to learn from a breast milk monitoring program. Environmental Health Perspectives 109: 75–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaKind, J.S., R.L. Brent, M.L. Dourson, et al. 2005. Human milk biomonitoring data: Interpretation and risk assessment issues. Journal of Toxicology and Environmental Health, Part A 68: 1713–1769.

    Article  CAS  Google Scholar 

  • LaKind, J.S., J.R. Sobus, M. Goodman, et al. 2014. A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument. Environment International 73: 195–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landrigan, P.J., B. Sonawane, D. Mattison, et al. 2002. Chemical contaminants in breast milk and their impacts on children’s health: An overview. Environmental Health Perspectives 110: A313–A315.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsson, K., K.L. Bjorklund, B. Palm, et al. 2014. Exposure determinants of phthalates, parabens, bisphenol A and triclosan in Swedish mothers and their children. Environment International 73: 323–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassen, T.H., H. Frederiksen, T.K. Jensen, et al. 2013. Temporal variability in urinary excretion of bisphenol A and seven other phenols in spot, morning, and 24-h urine samples. Environmental Research 126: 164–170.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, G.M., M.A. Verner, B. Luukinen, et al. 2014. Improving the risk assessment of lipophilic persistent environmental chemicals in breast milk. Critical Reviews in Toxicology 44: 600–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng, G., U. Ranft, D. Sugiri, et al. 2003. Pyrethroids used indoors--biological monitoring of exposure to pyrethroids following an indoor pest control operation. International Journal of Hygiene and Environmental Health 206: 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Levine, H., T. Berman, R. Goldsmith, et al. 2015. Urinary concentrations of polycyclic aromatic hydrocarbons in Israeli adults: Demographic and life-style predictors. International Journal of Hygiene and Environmental Health 218: 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, R.C., D.E. Cantonwine, L.V. Anzalota Del Toro, et al. 2014. Urinary biomarkers of exposure to insecticides, herbicides, and one insect repellent among pregnant women in Puerto Rico. Environmental Health 13: 97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ———. 2015. Distribution and determinants of urinary biomarkers of exposure to organophosphate insecticides in Puerto Rican pregnant women. Science of The Total Environment 15: 337–344.

    Article  CAS  Google Scholar 

  • Li, J., L. Zhang, Y. Wu, et al. 2009. A national survey of polychlorinated dioxins, furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in human milk in China. Chemosphere 75: 1236–1242.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., L.C. Romanoff, M.D. Lewin, et al. 2010. Variability of urinary concentrations of polycyclic aromatic hydrocarbon metabolite in general population and comparison of spot, first-morning, and 24-h void sampling. Journal of Exposure Science and Environmental Epidemiology 20: 526–535.

    Article  CAS  PubMed  Google Scholar 

  • Lignell, S., M. Aune, P.O. Darnerud, et al. 2009. Persistent organochlorine and organobromine compounds in mother’s milk from Sweden 1996-2006: Compound-specific temporal trends. Environmental Research 109: 760–767.

    Article  CAS  PubMed  Google Scholar 

  • Mahalingaiah, S., J.D. Meeker, K.R. Pearson, et al. 2008. Temporal variability and predictors of urinary bisphenol a concentrations in men and women. Environmental Health Perspectives 116: 173–178.

    Article  CAS  PubMed  Google Scholar 

  • Makey, C.M., M.D. McClean, A. Sjodin, et al. 2014. Temporal variability of polybrominated diphenyl ether (PBDE) serum concentrations over one year. Environmental Science & Technology 48: 14642–14649.

    Article  CAS  Google Scholar 

  • Meeker, J.D., D.B. Barr, L. Ryan, et al. 2005. Temporal variability of urinary levels of nonpersistent insecticides in adult men. Journal of Exposure Science and Environmental Epidemiology 15: 271–281.

    Article  CAS  Google Scholar 

  • Meeker, J.D., S.A. Missmer, L. Altshul, et al. 2009. Serum and follicular fluid organochlorine concentrations among women undergoing assisted reproduction technologies. Environmental Health 8: 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meeker, J.D., A.M. Calafat, and R. Hauser. 2012. Urinary phthalate metabolites and their biotransformation products: Predictors and temporal variability among men and women. Journal of Exposure Science and Environmental Epidemiology 22: 376–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mervish, N., K.J. McGovern, S.L. Teitelbaum, et al. 2014. Dietary predictors of urinary environmental biomarkers in young girls, BCERP, 2004-7. Environmental Research 133: 12–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morello-Frosch, R., J. Varshavsky, M. Liboiron, et al. 2015. Communicating results in post-Belmont era biomonitoring studies: Lessons from genetics and neuroimaging research. Environmental Research 136: 363–372.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, M., P. Jones, and J. Sobus. 2015. Short-term variability and predictors of urinary pentachlorophenol levels in Ohio preschool children. International Journal of Environmental Research and Public Health 12: 800–815.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • National Research Council. 2006. Human biomonitoring for environmental chemicals. Washington, DC: The National Academies Press. https://doi.org/10.17226/11700. Accessed 9 Dec 2017.

  • ———. 2012. Exposure science in the 21st century: A vision and a strategy. National Academies Press (US), Washington (DC). http://www.nap.edu/catalog/13507/exposure-science-in-the-21st-century-a-vision-and-a. Accessed 9 Dec 2017.

  • Needham, L.L., and K. Sexton. 2000. Assessing children’s exposure to hazardous environmental chemicals: An overview of selected research challenges and complexities. Journal of Exposure Analysis & Environmental Epidemiology 10: 611–629.

    Article  CAS  Google Scholar 

  • Needham, L.L., D.B. Barr, and A.M. Calafat. 2005a. Characterizing children’s exposures: Beyond NHANES. Neurotoxicology 26: 547–553.

    Article  PubMed  Google Scholar 

  • Needham, L.L., H. Ozkaynak, R.M. Whyatt, et al. 2005b. Exposure assessment in the National Children’s Study: Introduction. Environmental Health Perspectives 113: 1076–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Needham, L.L., D.G. Patterson, D.B. Barr, et al. 2005c. Uses of speciation techniques in biomonitoring for assessing human exposure to organic environmental chemicals. Analytical and Bioanalytical Chemistry 381: 397–404.

    Article  CAS  PubMed  Google Scholar 

  • Needham, L.L., A.M. Calafat, and D.B. Barr. 2007. Uses and issues of biomonitoring. International Journal of Hygiene and Environmental Health 210: 229–238.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2008. Assessing developmental toxicant exposures via biomonitoring. Basic & Clinical Pharmacology & Toxicology 102: 100–108.

    Article  CAS  Google Scholar 

  • Nepomnaschy, P.A., D.D. Baird, C.R. Weinberg, et al. 2009. Within-person variability in urinary bisphenol A concentrations: Measurements from specimens after long-term frozen storage. Environmental Research 109: 734–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oken, E., A.A. Baccarelli, D.R. Gold, et al. 2015. Cohort profile: Project viva. International Journal of Epidemiology 44: 37–48.

    Article  PubMed  Google Scholar 

  • Olsen, J. 2012. Nine months that last a lifetime. Experience from the Danish National Birth Cohort and lessons learned. International Journal of Hygiene and Environmental Health 215: 142–144.

    Article  PubMed  Google Scholar 

  • Pan, I.J., J.L. Daniels, A.H. Herring, et al. 2010. Lactational exposure to polychlorinated biphenyls, dichlorodiphenyltrichloroethane, and dichlorodiphenyldichloroethylene and infant growth: An analysis of the Pregnancy, Infection, and Nutrition Babies Study. Paediatric and Perinatal Epidemiology 24: 262–271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, H.Y., J.H. Kim, Y.H. Lim, et al. 2013. Influence of genetic polymorphisms on the association between phthalate exposure and pulmonary function in the elderly. Environmental Research 122: 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Peck, J.D., A.M. Sweeney, E. Symanski, et al. 2010. Intra- and inter-individual variability of urinary phthalate metabolite concentrations in Hmong women of reproductive age. Journal of Exposure Science and Environmental Epidemiology 20: 90–100.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gomez, B., R. Pastor-Barriuso, M. Cervantes-Amat, et al. 2013. BIOAMBIENT.ES study protocol: Rationale and design of a cross-sectional human biomonitoring survey in Spain. Environmental Science and Pollution Research 20: 1193–1202.

    Article  PubMed  Google Scholar 

  • Perharic, L., and P. Vracko. 2012. Development of national human biomonitoring programme in Slovenia. International Journal of Hygiene and Environmental Health 215: 180–184.

    Article  CAS  PubMed  Google Scholar 

  • Perrier, F., L. Giorgis-Allemand, R. Slama, et al. 2016. Within-subject pooling of biological samples to reduce exposure misclassification in biomarker-based studies. Epidemiology 27: 378–388.

    Article  PubMed  PubMed Central  Google Scholar 

  • Philippat, C., M.S. Wolff, A.M. Calafat, et al. 2013. Prenatal exposure to environmental phenols: Concentrations in amniotic fluid and variability in urinary concentrations during pregnancy. Environmental Health Perspectives 121: 1225–1231.

    PubMed  PubMed Central  Google Scholar 

  • Pirkle, J.L., L.L. Needham, and K. Sexton. 1995. Improving exposure assessment by monitoring human tissues for toxic chemicals. Journal of Exposure Analysis and Environmental Epidemiology 5: 405–424.

    CAS  PubMed  Google Scholar 

  • Pollack, A.Z., N.J. Perkins, L. Sjaarda, et al. 2016. Variability and exposure classification of urinary phenol and paraben metabolite concentrations in reproductive-aged women. Environmental Research 151: 513–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polder, A., C. Thomsen, G. Lindstrom, et al. 2008. Levels and temporal trends of chlorinated pesticides, polychlorinated biphenyls and brominated flame retardants in individual human breast milk samples from Northern and Southern Norway. Chemosphere 73: 14–23.

    Article  CAS  PubMed  Google Scholar 

  • Preau, J.L., L.Y. Wong, M.J. Silva, et al. 2010. Variability over 1 week in the urinary concentrations of metabolites of diethyl phthalate and di(2-ethylhexyl) phthalate among eight adults: An observational study. Environmental Health Perspectives 118: 1748–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puklova, V., A. Krskova, M. Cerna, et al. 2010. The mercury burden of the Czech population: An integrated approach. International Journal of Hygiene and Environmental Health 213: 243–251.

    Article  CAS  PubMed  Google Scholar 

  • Quiros-Alcala, L., B. Eskenazi, A. Bradman, et al. 2013. Determinants of urinary bisphenol A concentrations in Mexican/Mexican-American pregnant women. Environment International 59: 152–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab, U., U. Schwegler, U. Preiss, et al. 2007. Bavarian breast milk survey--pilot study and future developments. International Journal of Hygiene and Environmental Health 210: 341–344.

    Article  CAS  PubMed  Google Scholar 

  • Reeves, K.W., J. Luo, S.E. Hankinson, et al. 2014. Within-person variability of urinary bisphenol-A in postmenopausal women. Environmental Research 135: 285–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano, M.E., N.L. Hawley, M. Eliot, et al. 2017. Variability and predictors of urinary concentrations of organophosphate flame retardant metabolites among pregnant women in Rhode Island. Environmental Health 16 (1).

    Google Scholar 

  • Romero-Franco, M., R.U. Hernandez-Ramirez, A.M. Calafat, et al. 2011. Personal care product use and urinary levels of phthalate metabolites in Mexican women. Environment International 37: 867–871.

    Article  CAS  PubMed  Google Scholar 

  • Ronningen, K.S., L. Paltiel, H.M. Meltzer, et al. 2006. The biobank of the Norwegian Mother and Child Cohort Study: A resource for the next 100 years. European Journal of Epidemiology 21: 619–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saah, A.J., and D.R. Hoover. 1997. “Sensitivity” and “specificity” reconsidered: The meaning of these terms in analytical and diagnostic settings. Annals of Internal Medicine 126: 91–94.

    Article  CAS  PubMed  Google Scholar 

  • Saoudi, A., N. Frery, A. Zeghnoun, et al. 2014. Serum levels of organochlorine pesticides in the French adult population: The French National Nutrition and Health Study (ENNS), 2006-2007. Science of The Total Environment 472: 1089–1099.

    Article  CAS  PubMed  Google Scholar 

  • Sathyanarayana, S., R. Grady, E.S. Barrett, et al. 2016. First trimester phthalate exposure and male newborn genital anomalies. Environmental Research 151: 777–782.

    Article  CAS  PubMed  Google Scholar 

  • Schoeters, G., H.E. Den, A. Colles, et al. 2012. Concept of the Flemish human biomonitoring programme. International Journal of Hygiene and Environmental Health 215: 102–108.

    Article  CAS  PubMed  Google Scholar 

  • Schulz, C., A. Conrad, K. Becker, et al. 2007. Twenty years of the German Environmental Survey (GerES): Human biomonitoring – temporal and spatial (West Germany/East Germany) differences in population exposure. International Journal of Hygiene and Environmental Health 210: 271–297.

    Article  CAS  PubMed  Google Scholar 

  • Sexton, K., L.L. Needham, and J.L. Pirkle. 2004. Human biomonitoring of environmental chemicals. Am Sci 92: 38–45.

    Article  Google Scholar 

  • Smith, K.W., J.M. Braun, P. Williams, et al. 2012. Predictors and variability of urinary paraben concentrations in men and women, including before and during pregnancy. Environmental Health Perspectives 120: 1538–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobus, J.R., R.S. DeWoskin, Y.M. Tan, et al. 2015. Uses of NHANES biomarker data for chemical risk assessment: Trends, challenges, and opportunities. Environmental Health Perspectives 123: 919–927.

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomon, G.M., and P.M. Weiss. 2002. Chemical contaminants in breast milk: Time trends and regional variability. Environmental Health Perspectives 110: A339–A347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaan, S., A. Pronk, H.M. Koch, et al. 2015. Reliability of concentrations of organophosphate pesticide metabolites in serial urine specimens from pregnancy in the Generation R Study. Journal of Exposure Science and Environmental Epidemiology 25: 286–294.

    Article  CAS  PubMed  Google Scholar 

  • Su, P.H., Y.Z. Chang, H.P. Chang, et al. 2012. Exposure to di(2-ethylhexyl) phthalate in premature neonates in a neonatal intensive care unit in Taiwan. Pediatric Critical Care Medicine 13: 671–677.

    Article  PubMed  Google Scholar 

  • Sundstrom, M., D.J. Ehresman, A. Bignert, et al. 2011. A temporal trend study (1972-2008) of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in pooled human milk samples from Stockholm, Sweden. Environment International 37: 178–183.

    Article  PubMed  CAS  Google Scholar 

  • Teeguarden, J.G., A.M. Calafat, X.Y. Ye, et al. 2011. Twenty-four hour human urine and serum profiles of bisphenol A during high-dietary exposure. Toxicological Sciences 123: 48–57.

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum, S.L., J.A. Britton, A.M. Calafat, et al. 2008. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environmental Research 106: 257–269.

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum, S.L., N. Mervish, E.L. Moshier, et al. 2012. Associations between phthalate metabolite urinary concentrations and body size measures in New York City children. Environmental Research 112: 186–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tellez-Rojo, M.M., A. Cantoral, D.E. Cantonwine, et al. 2013. Prenatal urinary phthalate metabolites levels and neurodevelopment in children at two and three years of age. Science of The Total Environment 461: 386–390.

    Article  PubMed  CAS  Google Scholar 

  • Townsend, M.K., A.A. Franke, X.N. Li, et al. 2013. Within-person reproducibility of urinary bisphenol A and phthalate metabolites over a 1 to 3 year period among women in the Nurses’ Health Studies: A prospective cohort study. Environmental Health 12: 80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • UNEP. 2013. Global chemicals outlook – Towards sound management of chemicals. https://sustainabledevelopment.un.org/content/documents/1966Global%20Chemical.pdf. Accessed 9 Dec 2017.

  • Upson, K., S. Sathyanarayana, A.J. De Roos, et al. 2013. Phthalates and risk of endometriosis. Environmental Research 126: 91–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U.S. EPA. 1985. Lead poisoning: A historical perspective. https://archive.epa.gov/epa/aboutepa/lead-poisoning-historical-perspective.html. Accessed 9 Dec 2017.

  • ———. 2008. 5-Chloro-2-(2,4-dichlorophenoxy) phenol (Triclosan): Risk Assessment for the Reregistration Eligibility Decision (RED) Document. Case No 2340. DP Barcode 343544. PC Code: 054901, U.S. Environmental Protection Agency. https://archive.epa.gov/pesticides/reregistration/web/html/index-316.html. Accessed 9 Dec 2017.

  • ———. 2013. America’s children and the environment, Third Edition (ACE3). http://www.epa.gov/ace/index.html. Accessed 9 Dec 2017.

  • Valvi, D., N. Monfort, R. Ventura, et al. 2015. Variability and predictors of urinary phthalate metabolites in Spanish pregnant women. International Journal of Hygiene and Environmental Health 218: 220–231.

    Article  CAS  PubMed  Google Scholar 

  • Vandentorren, S., F. Zeman, L. Morin, et al. 2011. Bisphenol-A and phthalates contamination of urine samples by catheters in the Elfe pilot study: Implications for large-scale biomonitoring studies. Environmental Research 111: 761–764.

    Article  CAS  PubMed  Google Scholar 

  • Veyhe, A.S., D. Hofoss, S. Hansen, et al. 2015. The Northern Norway Mother-and-Child Contaminant Cohort (MISA) Study: PCA analyses of environmental contaminants in maternal sera and dietary intake in early pregnancy. International Journal of Hygiene and Environmental Health 218: 254–264.

    Article  CAS  PubMed  Google Scholar 

  • Vukavic, T., M.M. Vojinovic, I. Mihajlovic, et al. 2013. Human milk POPs and neonatal risk trend from 1982 to 2009 in the same geographic region in Serbia. Environment International 54: 45–49.

    Article  CAS  PubMed  Google Scholar 

  • Waldron, H.A. 1973. Lead poisoning in the ancient world. Medical History 17: 391–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins, D.J., M. Eliot, S. Sathyanarayana, et al. 2014. Variability and predictors of urinary concentrations of phthalate metabolites during early childhood. Environmental Science & Technology 48: 8881–8890.

    Article  CAS  Google Scholar 

  • Weiss, L., T.E. Arbuckle, M. Fisher, et al. 2015. Temporal variability and sources of triclosan exposure in pregnancy. International Journal of Hygiene and Environmental Health 218: 507–513.

    Article  CAS  PubMed  Google Scholar 

  • Weuve, J., B.N. Sanchez, A.M. Calafat, et al. 2006. Exposure to phthalates in neonatal intensive care unit infants: Urinary concentrations of monoesters and oxidative metabolites. Environmental Health Perspectives 114: 1424–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO. 2011. Toxicological and health aspects of bisphenol A. Report of Joint FAO/WHO Expert Meeting 2–5 November 2010 and Report of Stakeholder Meeting on Bisphenol A 1 November 2010. http://whqlibdoc.who.int/publications/2011/97892141564274_eng.pdf. Accessed 9 Dec 2017.

  • Whyatt, R.M., X.H. Liu, V.A. Rauh, et al. 2012. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environmental Health Perspectives 120: 290–295.

    Article  CAS  PubMed  Google Scholar 

  • Wielgomas, B. 2013. Variability of urinary excretion of pyrethroid metabolites in seven persons over seven consecutive days-implications for observational studies. Toxicology Letters 221: 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Yan, X., A. Calafat, S. Lashley, et al. 2009. Phthalates biomarker identification and exposure estimates in a population of pregnant women. Human and Ecological Risk Assessment 15: 565–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye, X.Y., L.Y. Wong, A.M. Bishop, et al. 2011. Variability of urinary concentrations of bisphenol A in spot samples, first morning voids, and 24-hour collections. Environmental Health Perspectives 119: 983–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeman, F.A., C. Boudet, K. Tack, et al. 2013. Exposure assessment of phthalates in French pregnant women: Results of the ELFE pilot study. International Journal of Hygiene and Environmental Health 216: 271–279.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.H., X.Z. Meng, L. Chen, et al. 2014. Age and sex-specific relationships between phthalate exposures and obesity in Chinese children at puberty. Plos One 9: e104852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng, W., W.H. Chow, G. Yang, et al. 2005. The Shanghai Women’s Health Study: Rationale, study design, and baseline characteristics. American Journal of Epidemiology 162: 1123–1131.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia M. Calafat .

Editor information

Editors and Affiliations

Additional information

Disclaimer The findings and conclusions in this report are those of the author and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calafat, A.M. (2018). Biomonitoring to Assess Exposures to Mixtures of Environmental Chemicals. In: Rider, C., Simmons, J. (eds) Chemical Mixtures and Combined Chemical and Nonchemical Stressors. Springer, Cham. https://doi.org/10.1007/978-3-319-56234-6_2

Download citation

Publish with us

Policies and ethics