Skip to main content

Comparing Predicted Additivity Models to Observed Mixture Data

  • Chapter
  • First Online:

Abstract

Dose-response relationships are generally assumed to be nonlinear. Standard multiple regression models may approximate the relationship in a narrow dose range but may not adequately approximate the relationship over a wider dose range – which may have a sigmoidal shape. Further, when the number of components in a mixture is large, the required experimental design to test for interactions becomes infeasible using factorial designs. In contrast, tests for departure from additivity may be based on comparing additivity-predicted models to those of mixtures data along fixed-ratio rays of the components. As such, tests for departure from additivity in mixtures should accommodate both nonlinear relationships and efficient experimental designs. In this chapter, we illustrate the strategy using three different basic assumptions about the underlying response surface from single chemical data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Berenbaum, M.C. 1985. The expected effect of a combination of agents: The general solution. Journal of Theoretical Biology 114: 413–431.

    Article  CAS  PubMed  Google Scholar 

  • Bliss, C.I. 1939. The toxicity of poisons applied jointly. Annals of Applied Biology 26: 585–615.

    Article  CAS  Google Scholar 

  • Casey, M., C. Gennings, W.H. Carter Jr, V. Moser, and J.E. Simmons. 2004. Detecting interaction(s) and assessing the impact of components subsets in a chemical mixtures using fixed-ratio mixture ray designs. Journal of Agricultural, Biological, and Environmental Statistics 9 (3): 339–361.

    Article  Google Scholar 

  • Casey, M., C. Gennings, and W.H. Carter Jr. 2006. Power and sample size calculations for linear hypotheses associated with mixtures of many components using fixed-ratio ray designs. Environmental and Ecological Statistics 13 (1): 11–23.

    Article  Google Scholar 

  • Gennings, C., W.H. Carter Jr, E.W. Carney, D.C. Grantley, B.B. Gollapudi, and R.A. Carchman. 2004. A novel flexible approach for evaluating fixed ratio mixtures of full and partial agonists. Toxicological Sciences 80: 134–150.

    Article  CAS  PubMed  Google Scholar 

  • Greco, W., H.D. Unkelbach, G. Poch, J. Suhnel, M. Kundi, and W. Moedeker. 1992. Consensus on concepts and terminology for combined action assessment: The Saariselka agreement. Archives of Complex. Environmental Studies 4: 65–69.

    Google Scholar 

  • Howard, G.J., J.J. Schlezinger, M.E. Hahn, and T.F. Webster. 2010. Generalized concentration addition predicts joint effects of aryl hydrocarbon receptor agonists with partial agonists and competitive antagonists. Environmental Health Perspectives 118: 666–672.

    Article  CAS  PubMed  Google Scholar 

  • Meadows-Shropshire, S.L., C. Gennings, and W.H. Carter Jr. 2005. Sample size and power determination for detecting interactions in mixtures of chemicals. Journal of Agricultural, Biological, and Environmental Statistics 10 (1): 104–117.

    Article  Google Scholar 

  • Rajapske, N., E. Silva, M. Scholze, and A. Kortenkamp. 2004. Deviation from additivity with estrogenic mixtures containing 4-nonylphenol and 4-tert-octyphenol detected in the E-SCREEN assay. Environmental Science and Technology 38: 6343–6352.

    Article  Google Scholar 

  • Scholze, M., W. Boedeker, M. Faust, T. Backhaus, R. Altenburger, and L.H. Grimme. 2001. A general best-fit method for concentration-response curves and the estimation of low-effect concentrations. Environmental Toxicology and Chemistry 20: 448–457.

    Article  CAS  PubMed  Google Scholar 

  • Scholze, M., E. Silva, and A. Kortenkamp. 2014. Extending the applicability of the dose addition model to the assessment of chemical mixtures of partial agonists by using a novel toxic unit extrapolation method. PLoS One 9 (2): e88808.

    Article  PubMed  PubMed Central  Google Scholar 

  • U.S. EPA (Environmental Protection Agency). 2000. Supplementary guidance for conducting health risk assessment of chemical mixtures, 209. (EPA/630/R-00/002). Washington, DC: Risk Assessment Forum. http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=4486

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Gennings .

Editor information

Editors and Affiliations

Appendices

Appendix

Extracted data from Fig. 3 in Gennings et al. (2004)

Chemical

CONC

FoldIND

Chemical

CONC

FoldIND

Chemical

CONC

FoldIND

MXC

0

0.9

b-HCH

0

0.6

BPA

0

0.6

MXC

0

1

b-HCH

0

1.1

BPA

0

1

MXC

0

1.2

b-HCH

0

1.4

BPA

0

1.4

MXC

1

0.8

b-HCH

1

0.8

BPA

0.008

1.4

MXC

1

1

b-HCH

1

0.9

BPA

0.008

1

MXC

2

0.9

b-HCH

1

1

BPA

0.008

0.08

MXC

2

1.6

b-HCH

2

1

BPA

0.01

3.2

MXC

2

1.6

b-HCH

2

1.3

BPA

0.01

2.4

MXC

4

2

b-HCH

2

2.3

BPA

0.01

2.2

MXC

4

3

b-HCH

4

1.8

BPA

0.02

3

MXC

4

4.2

b-HCH

4

3

BPA

0.02

1.4

MXC

8

3

b-HCH

4

4.2

BPA

0.02

1.4

MXC

8

3.2

b-HCH

8

2.4

BPA

0.04

1.8

MXC

8

3.5

b-HCH

8

3.4

BPA

0.04

1.2

MXC

10

3.8

b-HCH

8

4.2

BPA

0.04

1

MXC

10

6.6

b-HCH

10

2.4

BPA

0.08

1.1

MXC

10

6.8

b-HCH

10

3

BPA

0.08

1.1

DPN

0

0.6

b-HCH

10

4.3

BPA

0.08

1

DPN

0

1

OCT

0

0.6

BPA

0.1

2.5

DPN

0

1.4

OCT

0

1

BPA

0.1

1.5

DPN

0.01

0.6

OCT

0

1.4

BPA

0.1

1.5

DPN

0.01

1

OCT

0.01

0.8

BPA

0.5

2

DPN

0.01

1

OCT

0.01

0.9

BPA

0.5

2.1

DPN

0.02

1

OCT

0.01

1.2

BPA

0.5

3.2

DPN

0.02

1.4

OCT

0.02

1

BPA

1

4.4

DPN

0.02

1.4

OCT

0.02

1.2

BPA

1

8

DPN

0.04

2.6

OCT

0.02

1.8

BPA

1

10

DPN

0.04

4

OCT

0.04

0.9

MIX

0

0.06

DPN

0.04

4.4

OCT

0.04

1

MIX

0

0.09

DPN

0.08

4

OCT

0.04

3.6

MIX

0

0.09

DPN

0.08

4.4

OCT

0.08

1

MIX

0

1

DPN

0.08

4.4

OCT

0.08

1.2

MIX

0

1.1

DPN

0.1

5.5

OCT

0.08

1.2

MIX

0

1.4

DPN

0.1

6

OCT

0.1

1.6

MIX

0.2

0.8

DPN

0.1

11.5

OCT

0.1

2.4

MIX

0.2

0.8

DDT

0

0.8

OCT

0.1

2.8

MIX

0.2

1

DDT

0

1

OCT

0.2

3.4

MIX

1

1

DDT

0

1.2

OCT

0.2

3.4

MIX

1

1.1

DDT

1

5

OCT

0.2

4.8

MIX

1

1.5

DDT

1

6.8

OCT

0.4

4

MIX

2

1

DDT

1

9

OCT

0.4

4.2

MIX

2

1.4

DDT

2

4.8

OCT

0.4

6.8

MIX

2

1.8

DDT

2

7

OCT

0.8

3.8

MIX

3

2

DDT

2

7

OCT

0.8

6

MIX

3

2.4

DDT

4

4.5

OCT

0.8

6.2

MIX

3

2.8

DDT

4

6.5

OCT

1

5.5

MIX

4

3.2

DDT

4

6.9

OCT

1

6

MIX

4

4.8

DDT

8

11

OCT

1

7

MIX

4

6

DDT

8

11.2

   

MIX

8

5.8

DDT

8

11.2

   

MIX

8

6.2

DDT

10

8.2

   

MIX

8

9.5

DDT

10

9

      

DDT

10

15.5

      

SAS Code for Example Data

figure a
figure b
figure c

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gennings, C. (2018). Comparing Predicted Additivity Models to Observed Mixture Data. In: Rider, C., Simmons, J. (eds) Chemical Mixtures and Combined Chemical and Nonchemical Stressors. Springer, Cham. https://doi.org/10.1007/978-3-319-56234-6_11

Download citation

Publish with us

Policies and ethics