Skip to main content

Genetics of Carotid Disease

  • Chapter
  • First Online:
Stroke Genetics

Abstract

Please check the hierarchy of the section headings and confirm if correct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–e360.

    Article  PubMed  Google Scholar 

  2. Hajat C, Heuschmann PU, Coshall C, Padayachee S, Chambers J, Rudd AG, et al. Incidence of aetiological subtypes of stroke in a multi-ethnic population based study: the South London Stroke Register. J Neurol Neurosurg Psychiatry. 2011;82:527–33.

    Article  PubMed  Google Scholar 

  3. Palm F, Urbanek C, Wolf J, Buggle F, Kleemann T, Hennerici MG, et al. Etiology, risk factors and sex differences in ischemic stroke in the Ludwigshafen Stroke Study, a population-based stroke registry. Cerebrovasc Dis. 2012;33:69–75.

    Article  CAS  PubMed  Google Scholar 

  4. Stoberock K, Debus ES, Gulsen A, Gunther D, Larena-Avellaneda A, Eifert S, et al. Gender differences in patients with carotid stenosis. Vasa. 2016;45:11–6.

    Article  PubMed  Google Scholar 

  5. Woo D, Gebel J, Miller R, Kothari R, Brott T, Khoury J, et al. Incidence rates of first-ever ischemic stroke subtypes among blacks: a population-based study. Stroke. 1999;30:2517–22.

    Article  CAS  PubMed  Google Scholar 

  6. Flaherty ML, Kissela B, Khoury JC, Alwell K, Moomaw CJ, Woo D, et al. Carotid artery stenosis as a cause of stroke. Neuroepidemiology. 2013;40:36–41.

    Article  PubMed  Google Scholar 

  7. Lovett JK, Coull AJ, Rothwell PM. Early risk of recurrence by subtype of ischemic stroke in population-based incidence studies. Neurology. 2004;62:569–73.

    Article  CAS  PubMed  Google Scholar 

  8. Li H, Wong KS. Racial distribution of intracranial and extracranial atherosclerosis. J Clin Neurosci. 2003;10:30–4.

    Article  PubMed  Google Scholar 

  9. Markus HS, Khan U, Birns J, Evans A, Kalra L, Rudd AG, et al. Differences in stroke subtypes between black and white patients with stroke: the South London Ethnicity and Stroke Study. Circulation. 2007;116:2157–64.

    Article  PubMed  Google Scholar 

  10. Ohira T, Shahar E, Chambless LE, Rosamond WD, Mosley Jr TH, Folsom AR. Risk factors for ischemic stroke subtypes: the Atherosclerosis Risk in Communities Study. Stroke. 2006;37:2493–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wityk RJ, Lehman D, Klag M, Coresh J, Ahn H, Litt B. Race and sex differences in the distribution of cerebral atherosclerosis. Stroke. 1996;27:1974–80.

    Article  CAS  PubMed  Google Scholar 

  12. Mak W, Cheng TS, Chan KH, Cheung RT, Ho SL. A possible explanation for the racial difference in distribution of large-arterial cerebrovascular disease: ancestral European settlers evolved genetic resistance to atherosclerosis, but confined to the intracranial arteries. Med Hypotheses. 2005;65:637–48.

    Article  CAS  PubMed  Google Scholar 

  13. Putaala J, Curtze S, Hiltunen S, Tolppanen H, Kaste M, Tatlisumak T. Causes of death and predictors of 5-year mortality in young adults after first-ever ischemic stroke: the Helsinki Young Stroke Registry. Stroke. 2009;40:2698–703.

    Article  PubMed  Google Scholar 

  14. Purroy F, Montaner J, Molina CA, Delgado P, Ribo M, Alvarez-Sabin J. Patterns and predictors of early risk of recurrence after transient ischemic attack with respect to etiologic subtypes. Stroke. 2007;38:3225–9.

    Article  PubMed  Google Scholar 

  15. Tsantilas P, Kuhnl A, Kallmayer M, Knappich C, Schmid S, Kuetchou A, et al. Stroke risk in the early period after carotid related symptoms: a systematic review. J Cardiovasc Surg. 2015;56:845–52.

    CAS  Google Scholar 

  16. Chambers BR, Donnan GA. Carotid endarterectomy for asymptomatic carotid stenosis. Cochrane Database Syst Rev. 2005;4:CD001923.

    Google Scholar 

  17. Rerkasem K, Rothwell PM. Carotid endarterectomy for symptomatic carotid stenosis. Cochrane Database Syst Rev. 2011;4:CD001081.

    Google Scholar 

  18. Morgan DJ, Dhruva SS, Wright SM, Korenstein D. Update on medical practices that should be questioned in 2015. JAMA Intern Med. 2015;175:1960–4.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brott TG, Hobson 2nd RW, Howard G, Roubin GS, Clark WM, Brooks W, et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med. 2010;363:11–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Howard VJ, Lutsep HL, Mackey A, Demaerschalk BM, Sam 2nd AD, Gonzales NR, et al. Influence of sex on outcomes of stenting versus endarterectomy: a subgroup analysis of the Carotid Revascularization Endarterectomy Versus Stenting Trial (CREST). Lancet Neurol. 2011;10:530–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Voeks JH, Howard G, Roubin GS, Malas MB, Cohen DJ, Sternbergh 3rd WC, et al. Age and outcomes after carotid stenting and endarterectomy: the Carotid Revascularization Endarterectomy Versus Stenting Trial. Stroke. 2011;42:3484–90.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jalbert JJ, Nguyen LL, Gerhard-Herman MD, Kumamaru H, Chen CY, Williams LA, et al. Comparative effectiveness of carotid artery stenting versus carotid endarterectomy among medicare beneficiaries. Circ Cardiovasc Qual Outcomes. 2016;9:275–85.

    Article  PubMed  Google Scholar 

  23. Wallaert JB, Nolan BW, Stone DH, Powell RJ, Brown JR, Cronenwett JL, et al. Physician specialty and variation in carotid revascularization technique selected for medicare patients. J Vasc Surg. 2016;63:89–97.

    Article  PubMed  Google Scholar 

  24. Rudarakanchana N, Dialynas M, Halliday A. Asymptomatic Carotid Surgery Trial-2 (ACST-2): rationale for a randomised clinical trial comparing carotid endarterectomy with carotid artery stenting in patients with asymptomatic carotid artery stenosis. Eur J Vasc Endovasc Surg. 2009;38:239–42.

    Article  CAS  PubMed  Google Scholar 

  25. Halliday AW, Lees T, Kamugasha D, Grant R, Hoffman A, Rothwell PM, et al. Waiting times for carotid endarterectomy in uk: observational study. BMJ. 2009;338:b1847.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Halm EA. The good, the bad, and the about-to-get ugly: national trends in carotid revascularization: comment on “geographic variation in carotid revascularization among medicare beneficiaries, 2003-2006”. Arch Intern Med. 2010;170:1225–7.

    Google Scholar 

  27. Berkowitz SA, Redberg RF. Dramatic increases in carotid stenting despite nonconclusive data. Arch Intern Med. 2011;171:1794–5.

    Article  PubMed  Google Scholar 

  28. Why the united states center for medicare and medicaid services (CMS) should not extend reimbursement indications for carotid artery angioplasty/stenting. Brain Behav. 2012;2:200–7.

    Google Scholar 

  29. Abbott AL, Paraskevas KI, Kakkos SK, Golledge J, Eckstein HH, Diaz-Sandoval LJ, et al. Systematic review of guidelines for the management of asymptomatic and symptomatic carotid stenosis. Stroke. 2015;46:3288–301.

    Article  PubMed  Google Scholar 

  30. Keyhani S, Cheng EM, Naseri A, Halm EA, Williams LS, Johanning J, et al. Common reasons that asymptomatic patients who are 65 years and older receive carotid imaging. JAMA Intern Med. 2016;176:626–33.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Duggirala R, Gonzalez Villalpando C, O'Leary DH, Stern MP, Blangero J. Genetic basis of variation in carotid artery wall thickness. Stroke. 1996;27:833–7.

    Article  CAS  PubMed  Google Scholar 

  32. Fox CS, Polak JF, Chazaro I, Cupples A, Wolf PA, D'Agostino RA, et al. Genetic and environmental contributions to atherosclerosis phenotypes in men and women: Heritability of carotid intima-media thickness in the Framingham Heart Study. Stroke. 2003;34:397–401.

    Article  PubMed  Google Scholar 

  33. Medda E, Fagnani C, Schillaci G, Tarnoki AD, Tarnoki DL, Baracchini C, et al. Heritability of arterial stiffness and carotid intima-media thickness: an Italian twin study. Nutr Metab Cardiovasc Dis. 2014;24:511–7.

    Article  CAS  PubMed  Google Scholar 

  34. Gijsberts CM, Groenewegen KA, Hoefer IE, Eijkemans MJ, Asselbergs FW, Anderson TJ, et al. Race/ethnic differences in the associations of the Framingham risk factors with carotid IMT and cardiovascular events. PLoS One. 2015;10:e0132321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Spence JD. Measurement of intima-media thickness vs. carotid plaque: uses in patient care, genetic research and evaluation of new therapies. Int J Stroke. 2006;1:216–21.

    Article  PubMed  Google Scholar 

  36. Fox CS, Cupples LA, Chazaro I, Polak JF, Wolf PA, D'Agostino RB, et al. Genomewide linkage analysis for internal carotid artery intimal medial thickness: evidence for linkage to chromosome 12. Am J Hum Genet. 2004;74:253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Naj AC, West M, Rich SS, Post W, Kao WH, Wasserman BA, et al. Association of scavenger receptor class b type i polymorphisms with subclinical atherosclerosis: the Multi-ethnic Study of Atherosclerosis. Circ Cardiovasc Genet. 2010;3:47–52.

    Article  CAS  PubMed  Google Scholar 

  38. Manichaikul A, Naj AC, Herrington D, Post W, Rich SS, Rodriguez A. Association of SCARB1 variants with subclinical atherosclerosis and incident cardiovascular disease: the Multi-ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:1991–9.

    Article  CAS  PubMed  Google Scholar 

  39. Al-Shali KZ, House AA, Hanley AJ, Khan HM, Harris SB, Zinman B, et al. Genetic variation in pparg encoding peroxisome proliferator-activated receptor gamma associated with carotid atherosclerosis. Stroke. 2004;35:2036–40.

    Article  CAS  PubMed  Google Scholar 

  40. Iwata E, Yamamoto I, Motomura T, Tsubakimori S, Nohnen S, Ohmoto M, et al. The association of Pro12Ala polymorphism in PPARgamma2 with lower carotid artery imt in Japanese. Diabetes Res Clin Pract. 2003;62:55–9.

    Article  CAS  PubMed  Google Scholar 

  41. Temelkova-Kurktschiev T, Hanefeld M, Chinetti G, Zawadzki C, Haulon S, Kubaszek A, et al. Ala12Ala genotype of the peroxisome proliferator-activated receptor gamma2 protects against atherosclerosis. J Clin Endocrinol Metab. 2004;89:4238–42.

    Article  CAS  PubMed  Google Scholar 

  42. Lee BC, Lee HJ, Chung JH. Peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism is associated with reduced risk for ischemic stroke with type 2 diabetes. Neurosci Lett. 2006;410:141–5.

    Article  CAS  PubMed  Google Scholar 

  43. Zafarmand MH, van der Schouw YT, Grobbee DE, de Leeuw PW, Bots ML. Peroxisome proliferator-activated receptor gamma-2 P12A polymorphism and risk of acute myocardial infarction, coronary heart disease and ischemic stroke: a case-cohort study and meta-analyses. Vasc Health Risk Manag. 2008;4:427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Norata GD, Garlaschelli K, Ongari M, Raselli S, Grigore L, Benvenuto F, et al. Effect of the toll-like receptor 4 (TLR-4) variants on intima-media thickness and monocyte-derived macrophage response to lps. J Intern Med. 2005;258:21–7.

    Google Scholar 

  45. O'Donnell CJ, Cupples LA, D'Agostino RB, Fox CS, Hoffmann U, Hwang SJ, et al. Genome-wide association study for subclinical atherosclerosis in major arterial territories in the NHLBI’s Framingham Heart Study. BMC Med Genet. 2007;8(Suppl 1):S4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bis JC, Kavousi M, Franceschini N, Isaacs A, Abecasis GR, Schminke U, et al. Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque. Nat Genet. 2011;43:940–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Geisel MH, Coassin S, Hessler N, Bauer M, Eisele L, Erbel R, et al. Update of the effect estimates for common variants associated with carotid intima media thickness within four independent samples: The Bonn IMT Family Study, the Heinz Nixdorf Recall Study, the SAPHIR Study and the Bruneck Study. Atherosclerosis. 2016;249:83–7.

    Article  CAS  PubMed  Google Scholar 

  48. Allen NB, Lloyd-Jones D, Hwang SJ, Rasmussen-Torvik L, Fornage M, Morrison AC, et al. Genetic loci associated with ideal cardiovascular health: a meta-analysis of genome-wide association studies. Am Heart J. 2016;175:112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bis JC, White CC, Franceschini N, Brody J, Zhang X, Muzny D, et al. Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium targeted sequencing study. Circ Cardiovasc Genet. 2014;7:359–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boardman-Pretty F, Smith AJ, Cooper J, Palmen J, Folkersen L, Hamsten A, et al. Functional analysis of a carotid intima-media thickness locus implicates BCAR1 and suggests a causal variant. Circ Cardiovasc Genet. 2015;8:696–706.

    Article  PubMed  Google Scholar 

  51. Li C, Chen W, Jiang F, Simino J, Srinivasan SR, Berenson GS, et al. Genetic association and gene-smoking interaction study of carotid intima-media thickness at five gwas-indicated genes: the Bogalusa Heart Study. Gene. 2015;562:226–31.

    Article  CAS  PubMed  Google Scholar 

  52. den Hoed M, Strawbridge RJ, Almgren P, Gustafsson S, Axelsson T, Engstrom G, et al. GWAS-identified loci for coronary heart disease are associated with intima-media thickness and plaque presence at the carotid artery bulb. Atherosclerosis. 2015;239:304–10.

    Article  CAS  Google Scholar 

  53. Conde L, Bevan S, Sitzer M, Klopp N, Illig T, Thiery J, et al. Novel associations for coronary artery disease derived from genome wide association studies are not associated with increased carotid intima-media thickness, suggesting they do not act via early atherosclerosis or vessel remodeling. Atherosclerosis. 2011;219:684–9.

    Article  CAS  PubMed  Google Scholar 

  54. Vargas JD, Manichaikul A, Wang XQ, Rich SS, Rotter JI, Post WS, et al. Common genetic variants and subclinical atherosclerosis: the Multi-ethnic Study of Atherosclerosis (MESA). Atherosclerosis. 2016;245:230–6.

    Google Scholar 

  55. Melton PE, Carless MA, Curran JE, Dyer TD, Goring HH, Kent Jr JW, et al. Genetic architecture of carotid artery intima-media thickness in Mexican Americans. Circ Cardiovasc Genet. 2013;6:211–21.

    Article  PubMed  Google Scholar 

  56. Xie G, Myint PK, Voora D, Laskowitz DT, Shi P, Ren F, et al. Genome-wide association study on progression of carotid artery intima media thickness over 10 years in a Chinese cohort. Atherosclerosis. 2015;243:30–7.

    Article  CAS  PubMed  Google Scholar 

  57. Hemerich D, van der Laan SW, Tragante V, den Ruijter HM, de Borst GJ, Pasterkamp G, et al. Impact of carotid atherosclerosis loci on cardiovascular events. Atherosclerosis. 2015;243:466–8.

    Article  CAS  PubMed  Google Scholar 

  58. Dong C, Beecham A, Slifer S, Wang L, Blanton SH, Wright CB, et al. Genomewide linkage and peakwide association analyses of carotid plaque in Caribbean Hispanics. Stroke. 2010;41:2750–6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pleskovic A, Santl Letonja M, Cokan Vujkovac A, Kruzliak P, Petrovic D. SOX6 gene polymorphism (rs16933090) and markers of subclinical atherosclerosis in patients with type 2 diabetes mellitus. Int Angiol. 2016;35(6):552–6.

    PubMed  Google Scholar 

  60. Della-Morte D, Wang L, Beecham A, Blanton SH, Zhao H, Sacco RL, et al. Novel genetic variants modify the effect of smoking on carotid plaque burden in Hispanics. J Neurol Sci. 2014;344:27–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Della-Morte D, Beecham A, Dong C, Wang L, McClendon MS, Gardener H, et al. Association between variations in coagulation system genes and carotid plaque. J Neurol Sci. 2012;323:93–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang L, Buzkova P, Wassel CL, Roman MJ, North KE, Crawford DC, et al. Lack of associations of ten candidate coronary heart disease risk genetic variants and subclinical atherosclerosis in four us populations: the Population Architecture using Genomics and Epidemiology (PAGE) Study. Atherosclerosis. 2013;228:390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mohas M, Kisfali P, Jaromi L, Maasz A, Feher E, Csongei V, et al. GCKR gene functional variants in type 2 diabetes and metabolic syndrome: do the rare variants associate with increased carotid intima-media thickness? Cardiovasc Diabetol. 2010;9:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Murata-Mori F, Hayashida N, Ando T, Ikeoka T, Nakazato M, Sekita H, et al. Association of the GCKR rs780094 polymorphism with metabolic traits including carotid intima-media thickness in Japanese community-dwelling men, but not in women. Clin Chem Lab Med. 2014;52:289–95.

    Article  CAS  PubMed  Google Scholar 

  65. Petta S, Valenti L, Marchesini G, Di Marco V, Licata A, Camma C, et al. PNPLA3 GG genotype and carotid atherosclerosis in patients with non-alcoholic fatty liver disease. PLoS One. 2013;8:e74089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Siemelink MA, van der Laan SW, van Setten J, de Vries JP, de Borst GJ, Moll FL, et al. Common variants associated with blood lipid levels do not affect carotid plaque composition. Atherosclerosis. 2015;242:351–6.

    Article  CAS  PubMed  Google Scholar 

  67. van der Laan SW, Foroughi Asl H, van den Borne P, van Setten J, van der Perk ME, van de Weg SM, et al. Variants in ALOX5, ALOX5AP and LTA4H are not associated with atherosclerotic plaque phenotypes: the athero-express genomics study. Atherosclerosis. 2015;239:528–38.

    Article  PubMed  CAS  Google Scholar 

  68. Berardi C, Larson NB, Decker PA, Wassel CL, Kirsch PS, Pankow JS, et al. Multi-ethnic analysis reveals soluble l-selectin may be post-transcriptionally regulated by 3'utr polymorphism: the multi-ethnic study of atherosclerosis (mesa). Hum Genet. 2015;134:393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Adams Jr HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of org 10172 in acute stroke treatment. Stroke. 1993;24:35–41.

    Google Scholar 

  70. Ay H, Benner T, Arsava EM, Furie KL, Singhal AB, Jensen MB, et al. A computerized algorithm for etiologic classification of ischemic stroke: the Causative Classification of Stroke System. Stroke. 2007;38:2979–84.

    Article  PubMed  Google Scholar 

  71. Gretarsdottir S, Thorleifsson G, Reynisdottir ST, Manolescu A, Jonsdottir S, Jonsdottir T, et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat Genet. 2003;35:131–8.

    Article  CAS  PubMed  Google Scholar 

  72. Helgadottir A, Manolescu A, Thorleifsson G, Gretarsdottir S, Jonsdottir H, Thorsteinsdottir U, et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet. 2004;36:233–9.

    Article  CAS  PubMed  Google Scholar 

  73. Burdon KP, Rudock ME, Lehtinen AB, Langefeld CD, Bowden DW, Register TC, et al. Human lipoxygenase pathway gene variation and association with markers of subclinical atherosclerosis in the Diabetes Heart Study. Mediat Inflamm. 2010;2010:170153.

    Article  CAS  Google Scholar 

  74. Qiu H, Gabrielsen A, Agardh HE, Wan M, Wetterholm A, Wong CH, et al. Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability. Proc Natl Acad Sci U S A. 2006;103:8161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Domingues-Montanari S, Fernandez-Cadenas I, del Rio-Espinola A, Corbeto N, Krug T, Manso H, et al. Association of a genetic variant in the ALOX5AP with higher risk of ischemic stroke: a case-control, meta-analysis and functional study. Cerebrovasc Dis. 2010;29:528–37.

    Article  CAS  PubMed  Google Scholar 

  76. Dwyer JH, Allayee H, Dwyer KM, Fan J, Wu H, Mar R, et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med. 2004;350:29–37.

    Article  CAS  PubMed  Google Scholar 

  77. Zhao J, Goldberg J, Vaccarino V. Leukotriene A4 hydrolase haplotype, diet and atherosclerosis: a twin study. Atherosclerosis. 2013;226:238–44.

    Article  CAS  PubMed  Google Scholar 

  78. Tsai MY, Cao J, Steffen BT, Weir NL, Rich SS, Liang S, et al. 5-lipoxygenase gene variants are not associated with atherosclerosis or incident coronary heart disease in the Multi-ethnic Study of Atherosclerosis Cohort. J Am Heart Assoc. 2016;4:e002814.

    Article  Google Scholar 

  79. Roberts R, Stewart AF. 9p21 and the genetic revolution for coronary artery disease. Clin Chem. 2012;58:104–12.

    Article  CAS  PubMed  Google Scholar 

  80. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Google Scholar 

  81. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–3.

    Article  CAS  PubMed  Google Scholar 

  82. Samani NJ, Raitakari OT, Sipila K, Tobin MD, Schunkert H, Juonala M, et al. Coronary artery disease-associated locus on chromosome 9p21 and early markers of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28:1679–83.

    Article  CAS  PubMed  Google Scholar 

  83. Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B. Chromosome 9p21 snps associated with multiple disease phenotypes correlate with anril expression. PLoS Genet. 2010;6:e1000899.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Malik R, Freilinger T, Winsvold BS, Anttila V, Vander Heiden J, Traylor M, et al. Shared genetic basis for migraine and ischemic stroke: a genome-wide analysis of common variants. Neurology. 2015;84:2132–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Helgeland O, Hertel JK, Molven A, Raeder H, Platou CG, Midthjell K, et al. The chromosome 9p21 CVD- and T2D-associated regions in a Norwegian population (the HUNT2 survey). Int J Endocrinol. 2015;2015:164652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Mohlke KL, et al. Ink4/arf transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS One. 2009;4:e5027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E, et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis. 2012;220(2):449–55.

    Article  CAS  PubMed  Google Scholar 

  88. Folkersen L, Kyriakou T, Goel A, Peden J, Malarstig A, Paulsson-Berne G, et al. Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new anril splice variants. PLoS One. 2009;4:e7677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Holdt LM, Teupser D. Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arterioscler Thromb Vasc Biol. 2012;32:196–206.

    Article  CAS  PubMed  Google Scholar 

  90. Matarin M, Brown WM, Singleton A, Hardy JA, Meschia JF. Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21. Stroke. 2008;39:1586–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ye S, Willeit J, Kronenberg F, Xu Q, Kiechl S. Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: a population-based, prospective study. J Am Coll Cardiol. 2008;52:378–84.

    Article  CAS  PubMed  Google Scholar 

  92. Anderson CD, Biffi A, Rost NS, Cortellini L, Furie KL, Rosand J. Chromosome 9p21 in ischemic stroke: population structure and meta-analysis. Stroke. 2010;41:1123–31.

    Google Scholar 

  93. Carty CL, Keene KL, Cheng YC, Meschia JF, Chen WM, Nalls M, et al. Meta-analysis of genome-wide association studies identifies genetic risk factors for stroke in African Americans. Stroke. 2015;46:2063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ni X, Zhang J. Association between 9p21 genomic markers and ischemic stroke risk: evidence based on 21 studies. PLoS One. 2014;9:e90255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Chou SH, Shulman JM, Keenan BT, Secor EA, Buchman AS, Schneider J, et al. Genetic susceptibility for ischemic infarction and arteriolosclerosis based on neuropathologic evaluations. Cerebrovasc Dis. 2013;36:181–8.

    Article  CAS  PubMed  Google Scholar 

  96. Gschwendtner A, Bevan S, Cole JW, Plourde A, Matarin M, Ross-Adams H, et al. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol. 2009;65:531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dichgans M, Malik R, Konig IR, Rosand J, Clarke R, Gretarsdottir S, et al. Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke. 2014;45:24–36.

    Article  CAS  PubMed  Google Scholar 

  98. Nambi V, Boerwinkle E, Lawson K, Brautbar A, Chambless L, Franeschini N, et al. The 9p21 genetic variant is additive to carotid intima media thickness and plaque in improving coronary heart disease risk prediction in white participants of the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis. 2012;222(1):135–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dutta A, Henley W, Lang IA, Murray A, Guralnik J, Wallace RB, et al. The coronary artery disease-associated 9p21 variant and later life 20-year survival to cohort extinction. Circ Cardiovasc Genet. 2011;4:542–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Palomaki GE, Melillo S, Neveux L, Douglas MP, Dotson WD, Janssens AC, et al. Use of genomic profiling to assess risk for cardiovascular disease and identify individualized prevention strategies – a targeted evidence-based review. Genet Med. 2010;12:772–84.

    Google Scholar 

  101. Recommendations from the EGAPP Working Group. Genomic profiling to assess cardiovascular risk to improve cardiovascular health. Genet Med. 2010;12:839–43.

    Google Scholar 

  102. Bellenguez C, Bevan S, Gschwendtner A, Spencer CC, Burgess AI, Pirinen M, et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet. 2012;44(3):328–33.

    Article  CAS  PubMed  Google Scholar 

  103. Yan K, Cao Q, Reilly CM, Young NL, Garcia BA, Mishra N. Histone deacetylase 9 deficiency protects against effector T cell-mediated systemic autoimmunity. J Biol Chem. 2011;286:28833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Malik R, Traylor M, Pulit SL, Bevan S, Hopewell JC, Holliday EG, et al. Low-frequency and common genetic variation in ischemic stroke: the METASTROKE collaboration. Neurology. 2016;86:1217–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. NINDS Stroke Genetics Network (SiGN); International Stroke Genetics Consortium (ISGC). Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol. 2015 Dec 18. pii: S1474-4422(15)00338-5.

    Google Scholar 

  107. Tayo BO, Luke A, Zhu X, Adeyemo A, Cooper RS. Association of regions on chromosomes 6 and 7 with blood pressure in Nigerian families. Circ Cardiovasc Genet. 2009;2:38–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang X, Chen HM, Jaramillo E, Wang L, D'Mello SR. Histone deacetylase-related protein inhibits aes-mediated neuronal cell death by direct interaction. J Neurosci Res. 2008;86:2423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Azghandi S, Prell C, van der Laan SW, Schneider M, Malik R, Berer K, et al. Deficiency of the stroke relevant HDAC9 gene attenuates atherosclerosis in accord with allele-specific effects at 7p21.1. Stroke. 2015;46:197–202.

    Article  CAS  PubMed  Google Scholar 

  110. Langley B, Brochier C, Rivieccio MA. Targeting histone deacetylases as a multifaceted approach to treat the diverse outcomes of stroke. Stroke. 2009;40:2899–905.

    Article  CAS  PubMed  Google Scholar 

  111. Lv L, Tang YP, Han X, Wang X, Dong Q. Therapeutic application of histone deacetylase inhibitors for stroke. Cent Nerv Syst Agents Med Chem. 2011;11:138–49.

    Article  CAS  PubMed  Google Scholar 

  112. Ferronato S, Gelati M, Scuro A, Olivato S, Malerba G, Romanelli MG, et al. HDAC9, TWIST1 and FERD3L gene expression in asymptomatic stable and unstable carotid plaques. Inflamm Res. 2016;65:261–3.

    Article  CAS  PubMed  Google Scholar 

  113. Holliday EG, Maguire JM, Evans T-J, Koblar S, Jannes J, Sturm JW, et al. A locus on chromosome 6p21.1 is associated with large artery atherosclerotic stroke. Nat Genet. 2012;44(10):1147–51.

    Google Scholar 

  114. Traylor M, Makela KM, Kilarski LL, Holliday EG, Devan WJ, Nalls MA, et al. A novel MMP12 locus is associated with large artery atherosclerotic stroke using a genome-wide age-at-onset informed approach. PLoS Genet. 2014;10:e1004469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Lee TH, Ko TM, Chen CH, Lee MT, Chang YJ, Chang CH, et al. Identification of PTCSC3 as a novel locus for large-vessel ischemic stroke: a genome-wide association study. J Am Heart Assoc. 2016;4:e003003.

    Article  Google Scholar 

  116. Zaina S, Goncalves I, Carmona FJ, Gomez A, Heyn H, Mollet IG, et al. DNA methylation dynamics in human carotid plaques after cerebrovascular events. Arterioscler Thromb Vasc Biol. 2015;35:1835–42.

    Article  CAS  PubMed  Google Scholar 

  117. Jickling GC, Sharp FR. Biomarker panels in ischemic stroke. Stroke. 2015;46:915–20.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Stamova B, Xu H, Jickling G, Bushnell C, Tian Y, Ander BP, et al. Gene expression profiling of blood for the prediction of ischemic stroke. Stroke. 2010;41:2171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zhan X, Jickling GC, Tian Y, Stamova B, Xu H, Ander BP, et al. Transient ischemic attacks characterized by RNA profiles in blood. Neurology. 2011;77:1718–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jickling GC, Zhan X, Stamova B, Ander BP, Tian Y, Liu D, et al. Ischemic transient neurological events identified by immune response to cerebral ischemia. Stroke. 2012;43(4):1006–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jickling GC, Xu H, Stamova B, Ander BP, Zhan X, Tian Y, et al. Signatures of cardioembolic and large-vessel ischemic stroke. Ann Neurol. 2010;68:681–92.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Xu H, Tang Y, Liu DZ, Ran R, Ander BP, Apperson M, et al. Gene expression in peripheral blood differs after cardioembolic compared with large-vessel atherosclerotic stroke: biomarkers for the etiology of ischemic stroke. J Cereb Blood Flow Metab. 2008;28:1320–8.

    Article  CAS  PubMed  Google Scholar 

  123. Jickling GC, Stamova B, Ander BP, Zhan X, Liu D, Sison SM, et al. Prediction of cardioembolic, arterial, and lacunar causes of cryptogenic stroke by gene expression and infarct location. Stroke. 2012;43:2036–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ayari H, Bricca G. Microarray analysis reveals overexpression of IBSP in human carotid plaques. Adv Med Sci. 2012;57:334–40.

    Article  CAS  PubMed  Google Scholar 

  125. Gertow K, Nobili E, Folkersen L, Newman JW, Pedersen TL, Ekstrand J, et al. 12- and 15-lipoxygenases in human carotid atherosclerotic lesions: associations with cerebrovascular symptoms. Atherosclerosis. 2011;215:411–6.

    Article  CAS  PubMed  Google Scholar 

  126. Chowdhury M, Ghosh J, Slevin M, Smyth JV, Alexander MY, Serracino-Inglott F. A comparative study of carotid atherosclerotic plaque microvessel density and angiogenic growth factor expression in symptomatic versus asymptomatic patients. Eur J Vasc Endovasc Surg. 2010;39:388–95.

    Article  CAS  PubMed  Google Scholar 

  127. Salem MK, Butt HZ, Choke E, Moore D, West K, Robinson TG, et al. Gene and protein expression of chemokine (c-c-motif) ligand 19 is upregulated in unstable carotid atherosclerotic plaques. Eur J Vasc Endovasc Surg. 2016;52:427–36.

    Article  CAS  PubMed  Google Scholar 

  128. Sulkava M, Raitoharju E, Levula M, Seppala I, Lyytikainen LP, Mennander A, et al. Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques – tampere vascular study. Sci Rep. 2017;7:41483.

    Google Scholar 

  129. Maitrias P, Metzinger-Le Meuth V, Massy ZA, M'Baya-Moutoula E, Reix T, Caus T, et al. MicroRNA deregulation in symptomatic carotid plaque. J Vasc Surg. 2015;62:1245–50. e1241

    Article  PubMed  Google Scholar 

  130. Perisic L, Aldi S, Sun Y, Folkersen L, Razuvaev A, Roy J, et al. Gene expression signatures, pathways and networks in carotid atherosclerosis. J Intern Med. 2016;279:293–308.

    Article  CAS  PubMed  Google Scholar 

  131. Saksi J, Ijas P, Nuotio K, Sonninen R, Soinne L, Salonen O, et al. Gene expression differences between stroke-associated and asymptomatic carotid plaques. J Mol Med (Berl). 2011;89:1015–26.

    Article  CAS  Google Scholar 

  132. Salem MK, Vijaynagar B, Sayers RD, West K, Moore D, Robinson TG, et al. Histologically unstable asymptomatic carotid plaques have altered expression of genes involved in chemokine signalling leading to localised plaque inflammation and rupture. Eur J Vasc Endovasc Surg. 2013;45:121–7.

    Article  CAS  PubMed  Google Scholar 

  133. Cipollone F, Felicioni L, Sarzani R, Ucchino S, Spigonardo F, Mandolini C, et al. A unique microRNA signature associated with plaque instability in humans. Stroke. 2011;42:2556–63.

    Article  PubMed  Google Scholar 

  134. Perisic L, Hedin E, Razuvaev A, Lengquist M, Osterholm C, Folkersen L, et al. Profiling of atherosclerotic lesions by gene and tissue microarrays reveals pcsk6 as a novel protease in unstable carotid atherosclerosis. Arterioscler Thromb Vasc Biol. 2013;33:2432–43.

    Article  CAS  PubMed  Google Scholar 

  135. Natarajan P, Young R, Stitziel NO, Padmanabhan S, Baber U, Mehran R, et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. The Lancet Neurology. 2016;15(2):174–84 .

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradford B. Worrall M.D., M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Worrall, B.B., Chiota-McCollum, N.A., Southerland, A.M. (2017). Genetics of Carotid Disease. In: Sharma, P., Meschia, J. (eds) Stroke Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-56210-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56210-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56208-7

  • Online ISBN: 978-3-319-56210-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics