Skip to main content

Other Monogenetic Stroke Disorders

  • Chapter
  • First Online:
Stroke Genetics

Abstract

As described throughout this book, most strokes occur secondary to the interaction of multiple genes in combination with both lifestyle and environmental factors, thereby making stroke a prototypical complex disease. While this may be true for most forms of ischemic and hemorrhagic stroke, there are several established monogenetic disorders (i.e., transmitted via Mendelian inheritance) that may present with stroke. In some situations, stroke can be the predominant clinical feature, while in others, stroke can occur infrequently. In this chapter, we will describe such disorders focusing on clinical manifestations (Table 10.1) and then present details regarding the established genetic and diagnostic testing (Table 10.2) that are available. Given the disparate relationships between these disorders and stroke, the disorders have been classified in Tables 10.1 and 10.2 based upon their predominant etiologic mechanisms, including large arterial diseases, small vessel diseases, hematological diseases, mitochondrial diseases, and connective tissue disorders. The disorders are presented in the same order in both tables. For completeness and ease of reference, we have also included several monogenetic disorders in our tables that have dedicated chapters elsewhere in this book, including MELAS syndrome (see Chap. 8), CADASIL syndrome (see Chap. 6), and sickle cell disease (see Chap. 9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.omim.org/

  2. 2.

    http://www.ncbi.nlm.nih.gov/omim

References

  1. Homocystinuria (OMIM: 236200). http://www.omim.org/. Accessed 1 June 2016.

  2. U.S. National Center for Biotechnology Information (NCBI). http://www.ncbi.nlm.nih.gov/omim. Accessed 1 June 2016.

  3. Gene test—gene clinics. https://www.genetests.org/disorders/. Accessed 1 June 2016.

  4. Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost. 2005;3:1646–54.

    Article  CAS  PubMed  Google Scholar 

  5. Abahji TN, Nill L, Ide N, et al. Acute hyperhomocysteinemia induces microvascular and macrovascular endothelial dysfunction. Arch Med Res. 2007;38:411–6.

    Article  CAS  PubMed  Google Scholar 

  6. Upchurch Jr GR, Welch GN, Fabian AJ, et al. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem. 1997;272:17012–7.

    Article  CAS  PubMed  Google Scholar 

  7. Dayal S, Wilson KM, Leo L, et al. Enhanced susceptibility to arterial thrombosis in a murine model of hyperhomocysteinemia. Blood. 2006;108:2237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kelly PJ, Furie KL, Kistler JP, et al. Stroke in young patients with hyperhomocysteinemia due to cystathionine β-synthase deficiency. Neurology. 2003;60:275–9.

    Article  CAS  PubMed  Google Scholar 

  9. Chauveheid MP, Lidove O, Papo T, Laissy JP. Adult-onset homocystinuria arteriopathy mimics fibromuscular dysplasia. Am J Med. 2008;121:e5–6. Accessed 1 June 2016

    Article  PubMed  Google Scholar 

  10. Familial hyper-cholesterolemia—type II-a (OMIM: 143890). http://www.omim.org/. Accessed 1 June 2016.

  11. Familial HDL deficiency—type I (OMIM: 205400). http://www.omim.org/. Accessed 1 June 2016.

  12. Goldstein JL, Brown MS. The LDL receptor locus and the genetics of familial hypercholesterolemia. Annu Rev Genet. 1979;13:259–89.

    Article  CAS  PubMed  Google Scholar 

  13. Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;1:445–66.

    Article  CAS  PubMed  Google Scholar 

  14. Garg A, Simha V. Update on dyslipidemia. J Clin Endocrinol Metab. 2007;92:1581–9.

    Article  CAS  PubMed  Google Scholar 

  15. Yamauchi T, Tada M, Houkin K, Tanaka T, Nakamura Y, Kuroda S, Abe H, Inoue T, Ikezaki K, Matsushima T, Fukui M. Linkage of familial moyamoya disease (spontaneous occlusion of the circle of Willis) to chromosome 17q25. Stroke. 2000;31:930–5.

    Article  CAS  PubMed  Google Scholar 

  16. Kamada F, Aoki Y, Narisawa A, Abe Y, Komatsuzaki S, Kikuchi A, Kanno J, Niihori T, Ono M, Ishii N, Owada Y, Fujimura M, Mashimo Y, Suzuki Y, Hata A, Tsuchiya S, Tominaga T, Matsubara Y, Kure S. A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet. 2011;56:34–40.

    Article  CAS  PubMed  Google Scholar 

  17. Mineharu Y, Liu W, Inoue K, Matsuura N, Inoue S, Takenaka K, Ikeda H, Houkin K, Takagi Y, Kikuta K, Nozaki K, Hashimoto N, Koizumi A. Autosomal dominant moyamoya disease maps to chromosome 17q25.3. Neurology. 2008;70:2357–63.

    Article  CAS  PubMed  Google Scholar 

  18. Sakurai K, Horiuchi Y, Ikeda H, Ikezaki K, Yoshimoto T, Fukui M, Arinami T. A novel susceptibility locus for moyamoya disease on chromosome 8q23. J Hum Genet. 2004;49:278–81.

    Article  CAS  PubMed  Google Scholar 

  19. Herve D, Touraine P, Verloes A, Miskinyte S, Krivosic V, Logeart D, Alili N, Laredo JD, Gaudric A, Houdart E, Metzger JP, Tournier-Lasserve E, Woimant F. A hereditary moyamoya syndrome with multisystemic manifestations. Neurology. 2010;75:259–64.

    Article  CAS  PubMed  Google Scholar 

  20. Roder C, Peters V, Kasuya H, Nishizawa T, Wakita S, Berg D, Schulte C, Khan N, Tatagiba M, Krischek B. Analysis of ACTA2 in European moyamoya disease patients. Eur J Paediatr Neurol. 2011;15:117–22.

    Google Scholar 

  21. Herve D, Philippi A, Belbouab R, Zerah M, Chabrier S, Collardeau-Frachon S, Bergametti F, Essongue A, Berrou E, Krivosic V, Sainte-Rose C, Houdart E, et al. Loss of alpha-1-beta-1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia. Am J Hum Genet. 2014;94:385–94. Note: Erratum—Am J Hum Genet 2014;94: 642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. CADASIL—cerebral autosomol dominant subcortical infarcts and leukoencephaly (OMIM: 125310). http://www.omim.org/. Accessed 1 June 2016.

  23. Reyes S, Viswanathan A, Godin O, Dufouil C, Benisty S, Hernandez K, et al. Apathy: a major symptom in CADASIL. Neurology. 2009;72:905–10.

    Article  CAS  PubMed  Google Scholar 

  24. Monet-Leprêtre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M, et al. Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain. 2009;132:1601–12.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tikka S, Mykkänen K, Ruchoux MM, Bergholm R, Junna M, Pöyhönen M, et al. Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain. 2009;132:933–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Joutel A, Favrole P, Labauge P, Chabriat H, Lescoat C, Andreux F, et al. Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis. Lancet. 2001;358:2049–51.

    Article  CAS  PubMed  Google Scholar 

  27. Singhal S, Rich P, Markus HS. The spatial distribution of MR imaging abnormalities in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and their relationship to age and clinical features. AJNR Am J Neuroradiol. 2005;26:2481–7.

    PubMed  Google Scholar 

  28. Liem MK, Lesnik Oberstein SA, Haan J, van der Neut IL, Ferrari MD, van Buchem MA, et al. MRI correlates of cognitive decline in CADASIL: a 7-year follow-up study. Neurology. 2009;72:143–8.

    Article  CAS  PubMed  Google Scholar 

  29. CARASIL (OMIM: 600142). http://www.omim.org/. Accessed 1 June 2016.

  30. Arima K, Yanagawa S, Ito N, Ikesa S. Cerebral arterial pathology of CADASIL and CARASIL (Maeda syndrome). Neuropathology. 2003;23:327–34.

    Article  PubMed  Google Scholar 

  31. Yanagawa S, Ito N, Aruna K, Ikeda S. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology. 2002;58:817–20.

    Article  PubMed  Google Scholar 

  32. Razvi SSM, Bone I. Single gene disorders causing ischaemic stroke. J Neurol. 2006;253:685–700.

    Article  PubMed  Google Scholar 

  33. Lanfranconi S, Markus H. COL4A1 mutations as a monogenetic cause of cerebral small vessel disease: a systematic review. Stroke. 2010;41:e513–8.

    Article  PubMed  Google Scholar 

  34. Alamowitch S, Plaisier E, Favrole P, Prost C, Chen Z, Van Agtmael T, Marro B, Ronco P. Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology. 2009;73:1873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Plaisier E, Alamowitch S, Gribouval O, Mougenot B, Gaudric A, Antignac C, Roullet E, Ronco P. Autosomal-dominant familial hematuria with retinal arteriolar tortuosity and contractures: a novel syndrome. Kidney Int. 2005;67:2354–60.

    Article  PubMed  Google Scholar 

  36. Plaisier E, Gribouval O, Alamowitch S, Mougenot B, Prost C, Verpont MC, Marro B, Desmettre T, Cohen SY, Roullet E, Dracon M, Fardeau M, Van Agtmael T, Kerjaschki D, Antignac C, Ronco P. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med. 2007;357:2687–95.

    Article  CAS  PubMed  Google Scholar 

  37. Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med. 2009;360:1729–39.

    Article  CAS  PubMed  Google Scholar 

  38. Mendioroz M, Fernández-Cadenas I, Del Río-Espinola A, Rovira A, Solé E, Fernández-Figueras MT, et al. A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population. Neurology. 2010;75:2033–5.

    Article  CAS  PubMed  Google Scholar 

  39. Fabry disease (OMIM 301500). http://www.omim.org/. Accessed 1 June 2016.

  40. Fellgiebel A, Müller MJ, Ginsberg L. CNS manifestations of Fabry’s disease. Lancet Neurol. 2006;5:791–5.

    Article  PubMed  Google Scholar 

  41. Sims K, Politei J, Banikazemi M, Lee P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural history data from the Fabry Registry. Stroke. 2009;40:788–94.

    Article  PubMed  Google Scholar 

  42. Mehta A, Beck M, Elliott P, Giugliani R, Linhart A, Sunder-Plassmann G, et al. Enzyme replacement therapy with agalsidase alfa in patients with Fabry’s disease: an analysis of registry data. Lancet. 2009;374:1986–96.

    Article  CAS  PubMed  Google Scholar 

  43. Rolfs A, Böttcher T, Zschiesche M, Morris P, Winchester B, Bauer P, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet. 2005;366:1794–6.

    Article  PubMed  Google Scholar 

  44. Wozniak MA, Kittner SJ, Tuhrim S, Cole JW, Stern B, Dobbins M, et al. Frequency of unrecognized Fabry disease among young European-American and African-American men with first ischemic stroke. Stroke. 2010;41:78–81.

    Article  PubMed  Google Scholar 

  45. Baptista MV, Ferreira S, Pinho-E-Melo T, Carvalho M, Cruz VT, Carmona C, et al. Mutations of the GLA gene in young patients with stroke: the PORTYSTROKE study—screening genetic conditions in Portuguese young stroke patients. Stroke. 2010;41:431–6.

    Article  CAS  PubMed  Google Scholar 

  46. Brouns R, Thijs V, Eyskens F, Van den Broeck M, Belachew S, Van Broeckhoven C, et al. Belgian Fabry study: prevalence of Fabry disease in a cohort of 1,000 young patients with cerebrovascular disease. Stroke. 2010;41:863–8.

    Article  PubMed  Google Scholar 

  47. Brain small vessel disease with hemorrhage—COL4A1 (OMIM 607595). http://www.omim.org/. Accessed 1 June 2016.

  48. Yamamoto Y, Craggs L, Baumann M, Kalimo H, Kalaria RN. Review: molecular genetics and pathology of hereditary small vessel diseases of the brain. Neuropathol Appl Neurobiol. 2001;37:94–113.

    Article  Google Scholar 

  49. TREX spectrum disorders (OMIM: 192315). http://www.omim.org/. Accessed 1 June 2016.

  50. Kavanaugh D, Spitzer D, Kothari P, et al. New roles for the major human 3′–5′ exonuclease TREX1 in human disease. Cell Cycle. 2008;7:1718–25.

    Google Scholar 

  51. Jen J, Cohen AH, Yue Q, et al. Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). Neurology. 1997;49:1322–30.

    Article  CAS  PubMed  Google Scholar 

  52. Richards A, van den Maagdenberg AM, Jen JC, et al. C-terminal truncations in human 3′–5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet. 2007;39:1068–70.

    Article  CAS  PubMed  Google Scholar 

  53. Sickle cell disease (OMIM: 603903). http://www.omim.org/. Accessed 1 June 2016.

  54. Adams RJ, McKie VC, Hsu L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339:5–11.

    Article  CAS  PubMed  Google Scholar 

  55. Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91:288–94.

    CAS  PubMed  Google Scholar 

  56. Nichols FT, Jones AM, Adams RJ. Stroke prevention in sickle cell disease (STOP) study guidelines for transcranial Doppler testing. J Neuroimaging. 2001;11:354–62.

    Article  CAS  PubMed  Google Scholar 

  57. Adams RJ. Lessons from the stroke prevention trial in sickle cell anemia (STOP) study. J Child Neurol. 2000;15:344–9.

    Article  CAS  PubMed  Google Scholar 

  58. Pegelow CH, Wang W, Granger S, et al. Silent infarcts in children with sickle cell anemia and abnormal cerebral artery velocity. Arch Neurol. 2001;58:2017–21.

    Article  CAS  PubMed  Google Scholar 

  59. Prengler M, Pavlakis SG, Prohovnik I, Adams RJ. Sickle cell disease: the neurological complications. Ann Neurol. 2002;51:543–52.

    Article  CAS  PubMed  Google Scholar 

  60. Steinberg MH, Barton F, Castro O, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA. 2003;289:1645–51.

    Article  CAS  PubMed  Google Scholar 

  61. Protein C deficiency (OMIM: 176860). http://www.omim.org/. Accessed 1 June 2016.

  62. Griffin JH, Evatt B, Zimmerman TS, et al. Deficiency of protein C in congenital thrombotic disease. J Clin Invest. 1981;68:1370–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bertina RM, Broekmans AW, Krommenhoek-van Es C, van Wijngaarden A. The use of a functional and immunologic assay for plasma protein C in the study of the heterogeneity of congenital protein C deficiency. Thromb Haemost. 1984;51:1–5.

    CAS  PubMed  Google Scholar 

  64. Bertina RM, Broekmans AW, van der Linden IK, Mertens K. Protein C deficiency in a Dutch family with thrombotic disease. Thromb Haemost. 1982;48:1–5.

    CAS  PubMed  Google Scholar 

  65. Berdeaux DH, Abshire TC, Marlar RA. Dysfunctional protein C deficiency (type II): a report of 11 cases in 3 American families and review of the literature. Am J Clin Pathol. 1993;99:677–86.

    Article  CAS  PubMed  Google Scholar 

  66. Protein S deficiency (OMIM: 176880, 612336). http://www.omim.org/. Accessed 1 June 2016.

  67. Comp PC, Nixon RR, Cooper MR, Esmon CT. Familial protein S deficiency is associated with recurrent thrombosis. J Clin Invest. 1984;74:2082–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Engesser L, Broekmans AW, Briet E, et al. Hereditary protein S deficiency: clinical manifestations. Ann Intern Med. 1987;106:677–82.

    Article  CAS  PubMed  Google Scholar 

  69. Factor V Leiden mutation (OMIM: 227400). http://www.omim.org/. Accessed 1 June 2016.

  70. de Paula SA, Ribeiro DD, Carvalho MG, et al. Factor V Leiden and increased risk for arterial thrombotic disease in young Brazilian patients. Blood Coagul Fibrinolysis. 2006;17:271–5.

    Article  Google Scholar 

  71. Margaglione M, D’Andrea G, Giuliani N, et al. Inherited prothrombotic conditions and premature ischemic stroke: sex difference in the association with factor V Leiden. Arterioscler Thromb Vasc Biol. 1999;19:1751–6.

    Article  CAS  PubMed  Google Scholar 

  72. Hamedani AG, Cole JW, Mitchell BD, Kittner SJ. Meta-analysis of factor V Leiden and ischemic stroke in young adults: the importance of case ascertainment. Stroke. 2010;41:1599–603.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Longstreth Jr WT, Rosendaal FR, Siscovick DS, et al. Risk of stroke in young women and two prothrombotic mutations: factor V Leiden and prothrombin gene variant (G20210A). Stroke. 1998;29:577–80.

    Article  PubMed  Google Scholar 

  74. Nabavi DG, Junker R, Wolff E, et al. Prevalence of factor V Leiden mutation in young adults with cerebral ischaemia: a case-control study on 225 patients. J Neurol. 1998;245:653–8.

    Article  CAS  PubMed  Google Scholar 

  75. Grody WW, Griffin JH, Taylor AK, et al. American College of Medical Genetics consensus statement on factor V Leiden mutation testing. Genet Med. 2001;3:139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. MELAS—Mitochondrial encephalopathy lactic acidosis and stroke (OMIM:540000). http://www.omim.org/. Accessed 1 June 2016.

    Google Scholar 

  77. Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol. 1984;16:481–8.

    Article  CAS  PubMed  Google Scholar 

  78. Hirano M, Pavlakis SG. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS): current concepts. J Child Neurol. 1994;9:4–13.

    Article  CAS  PubMed  Google Scholar 

  79. Ko CH, Lam CW, Tse PW, Kong CK, Chan AK, Wong LJ. De novo mutation in the mitochondrial tRNALeu(UUR) gene (A3243G) with rapid segregation resulting in MELAS in the offspring. J Paediatr Child Health. 2001;37:87–90.

    Article  CAS  PubMed  Google Scholar 

  80. Pang CY, Huang CC, Yen MY, et al. Molecular epidemiologic study of mitochondrial DNA mutations in patients with mitochondrial diseases in Taiwan. J Formos Med Assoc. 1999;98:326–34.

    CAS  PubMed  Google Scholar 

  81. Nishino I, Komatsu M, Kodama S, Horai S, Nonaka I, Goto Y. The 3260 mutation in mitochondrial DNA can cause mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS). Muscle Nerve. 1996;19:1603–4.

    Article  CAS  PubMed  Google Scholar 

  82. Sato W, Hayasaka K, Shoji Y, et al. A mitochondrial tRNA(Leu)(UUR) mutation at 3,256 associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochem Mol Biol Int. 1994;33:1055–61.

    CAS  PubMed  Google Scholar 

  83. Peterson PL. The treatment of mitochondrial myopathies and encephalomyopathies. Biochim Biophys Acta. 1995;1271:275–80.

    Article  CAS  PubMed  Google Scholar 

  84. Lam CW, Lau CH, Williams JC, Chan YW, Wong LJ. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) triggered by valproate therapy. Eur J Pediatr. 1997;156:562–4.

    Article  CAS  PubMed  Google Scholar 

  85. DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003;348:2656–68.

    Article  CAS  PubMed  Google Scholar 

  86. Ehlers-Danlos syndrome—type IV (OMIM: 130050). http://www.omim.org/. Accessed 1 June 2016.

  87. Superti-Furga A, Gugler E, Gitzelmann R, Steinmann B. Ehlers-Danlos syndrome type IV: a multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen. J Biol Chem. 1988;263:6226–32.

    CAS  PubMed  Google Scholar 

  88. Germain DP, Herrera-Guzman Y. Vascular Ehlers-Danlos syndrome. Ann Genet. 2004;47:1–9.

    Article  PubMed  Google Scholar 

  89. Marfan syndrome (OMIM: 154700). http://www.omim.org/. Accessed 1 June 2016.

  90. Sponseller PD, Hobbs W, Riley LH, Pyeritz RE. The thoracolumbar spine in Marfan syndrome. J Bone Joint Surg Am. 1995;77:867–76.

    Article  CAS  PubMed  Google Scholar 

  91. Chan YC, Ting CW, Ho P, Poon JT, Cheung GC, Cheng SW. Ten-year epidemiological review of in-hospital patients with Marfan syndrome. Ann Vasc Surg. 2008;22:608–12.

    Article  CAS  PubMed  Google Scholar 

  92. Ballabio E, Bersano A, Bresolin N, Candelise L. Monogenic vessel diseases related to ischemic stroke: a clinical approach. J Cereb Blood Flow Metab. 2007;27:1649–62.

    Article  CAS  PubMed  Google Scholar 

  93. Pyeritz RE. The Marfan syndrome. Annu Rev Med. 2000;51:481–510.

    Article  CAS  PubMed  Google Scholar 

  94. Schievink WI, Michels VV, Piepgras DG. Neurovascular manifestations of heritable connective tissue disorders. Stroke. 1994;25:889–903.

    Article  CAS  PubMed  Google Scholar 

  95. Wityk R, Zanferrari C, Oppenheimer S. Neurovascular complications of Marfan syndrome: a retrospective, hospital-based study. Stroke. 2002;33:680–4.

    Article  PubMed  Google Scholar 

  96. Silverman IE, Berman DM, Dike GL, et al. Vertebrobasilar dolichoectasia associated with Marfan syndrome. J Stroke Cerebrovasc Dis. 2000;9:196–8.

    Article  CAS  PubMed  Google Scholar 

  97. Fibromuscular dysplasia (OMIM: 135580). http://www.omim.org/. Accessed 1 June 2016.

  98. Mettinger KL, Ericson K. Fibromuscular dysplasia and the brain. I. Observations on angiographic, clinical and genetic characteristics. Stroke. 1982;13:46–52.

    Google Scholar 

  99. Plouin PF, Perdu J, LaBatide-Alanore A, et al. Fibromuscular dysplasia. Orphanet J Rare Dis. 2007;2:28.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Meyers DS, Grim CE, Keitzer WF. Fibromuscular dysplasia of the renal artery with medial dissection. A case simulating polyarteritis nodosa. Am J Med. 1974;56:412–6.

    Article  CAS  PubMed  Google Scholar 

  101. Janzen J, Vuong PN, Rothenberger-Janzen K. Takayasu’s arteritis and fibromuscular dysplasia as causes of acquired atypical coarctation of the aorta: retrospective analysis of seven cases. Heart Vessels. 1999;14:277–82.

    Article  CAS  PubMed  Google Scholar 

  102. Siegert CE, Macfarlane JD, Hollander AM, van Kemenade F. Systemic fibromuscular dysplasia masquerading as polyarteritis nodosa. Nephrol Dial Transplant. 1996;11:1356–8.

    Article  CAS  PubMed  Google Scholar 

  103. Sperati CJ, Aggarwal N, Arepally A, Atta MG. Fibromuscular dysplasia. Kidney Int. 2009;75:333–6.

    Article  PubMed  Google Scholar 

  104. Niizuma S, Nakahama H, Inenaga T, et al. Asymptomatic renal infarction, due to fibromuscular dysplasia in a young woman with 11 years of follow-up. Clin Exp Nephrol. 2005;9:170–3.

    Article  PubMed  Google Scholar 

  105. Connor A, Mathieson P. A string of beads. Am J Med. 2008;121:580–2.

    Article  PubMed  Google Scholar 

  106. Olin JW. Recognizing and managing fibromuscular dysplasia. Cleve Clin J Med. 2007;74:273–82.

    Article  PubMed  Google Scholar 

  107. Begelman SM, Olin JW. Fibromuscular dysplasia. Curr Opin Rheumatol. 2000;12:41–7.

    Article  CAS  PubMed  Google Scholar 

  108. Pseudoxanthoma elasticum—AD form (OMIM: 177850), AR form (OMIM: 264800). http://www.omim.org/. Accessed 1 June 2016.

    Google Scholar 

  109. Struk B, Neldner KH, Rao VS, St Jean P, Lindpaintner K. Mapping of both autosomal recessive and dominant variants of pseudoxanthoma elasticum to chromosome 16p13.1. Hum Mol Genet. 1997;6:1823–8.

    Article  CAS  PubMed  Google Scholar 

  110. Gheduzzi D, Guidetti R, Anzivino C, et al. ABCC6 mutations in Italian families affected by pseudoxanthoma elasticum (PXE). Hum Mutat. 2004;24:438–9.

    Article  PubMed  Google Scholar 

  111. Sherer DW, Bercovitch L, Lebwohl M. Pseudoxanthoma elasticum: significance of limited phenotypic expression in parents of affected offspring. J Am Acad Dermatol. 2001;44:534–7.

    Article  CAS  PubMed  Google Scholar 

  112. Chassaing N, Martin L, Calvas P, et al. Pseudoxanthoma elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations. J Med Genet. 2005;42:881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hu X, Plomp AS, van Soest S, et al. Pseudoxanthoma elasticum: a clinical, histopathological, and molecular update. Surv Ophthalmol. 2003;48:424–38.

    Article  PubMed  Google Scholar 

  114. Laube S, Moss C. Pseudoxanthoma elasticum. Arch Dis Child. 2005;90:754–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Recommended Review Articles

  1. Ballabio E, Bersano A, Bresolin N, Candelise L. Monogenic vessel diseases related to ischemic stroke: a clinical approach. J Cereb Blood Flow Metab. 2007;27:1649–62.

    Article  CAS  PubMed  Google Scholar 

  2. Yananoto Y, Craggs L, Baumann M, Kalimo H, Kalaria R. Review: molecular genetics and pathology of hereditary small vessel diseases of the brain. Neuropathol Appl Neurobiol. 2011;37:94–113.

    Article  Google Scholar 

  3. Razvi SS, Bone I. Single gene disorders causing ischaemic stroke. J Neurol. 2006;253:685–700.

    Article  PubMed  Google Scholar 

  4. Meschia J, Worrall B, Rich S. Genetic susceptibility to ischemic stroke. Nat Rev Neurol. 2011;317:369–78.

    Article  Google Scholar 

  5. Testai FD, Gorelick PB. Inherited metabolic disorders and stroke part 1: Fabry disease and mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Arch Neurol. 2010;67:19–24.

    PubMed  Google Scholar 

  6. Testai FD, Gorelick PB. Inherited metabolic disorders and stroke part 2: homocystinuria, organic acidurias, and urea cycle disorders. Arch Neurol. 2010;67:148–53.

    PubMed  Google Scholar 

  7. Tan RY, Markus HS. Monogenic causes of stroke: now and the future. J Neurol. 2015;262(12):2601–16.

    Article  PubMed  Google Scholar 

  8. Bersano A, Markus HS, Quaglini S, Arbustini E, Lanfranconi S, et al. Clinical pregenetic screening for stroke monogenic diseases: results from Lombardia GENS Registry. Stroke. 2016. pii: STROKEAHA.115.012281. [Epub ahead of print]

    Google Scholar 

  9. The genetic information nondiscrimination act (GINA). http://www.nchpeg.org/index.php?option=com_content&view=article&id=97&Itemid=120. Accessed 1 June 2016

    Google Scholar 

  10. Genetic information nondiscrimination Act of 2008. http://ginahelp.org/. Accessed 1 June 2016.

    Google Scholar 

  11. Pak Y. Gregerson JP. EEOC issues new guidance on employee wellness programs. The National Law Review (2016). ISSN 2161-3362. http://www.natlawreview.com/article/eeoc-issues-new-guidance-employee-wellness-programs. Accessed 1 June 2016.

  12. Chen B, Gagnon M, Shahangian S, et al. Good laboratory practices for molecular genetic testing for heritable diseases and conditions. CDC MMWR. 2009;58:1–29. http://www.cdc.gov/mmwr/pdf/rr/rr5806.pdf/. Accessed 1 June 2016

    PubMed  Google Scholar 

  13. Good laboratory practices for molecular genetics testing. http://www.cdc.gov/labtraining/cdc-lab-training-courses/good_lab_practices_molecular_genetics_testing.html Accessed 1 June 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Cole M.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cole, J.W., Stack, C.A. (2017). Other Monogenetic Stroke Disorders. In: Sharma, P., Meschia, J. (eds) Stroke Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-56210-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56210-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56208-7

  • Online ISBN: 978-3-319-56210-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics