Skip to main content

Learning from Animations: From 2D to 3D?

  • Chapter
  • First Online:
Learning from Dynamic Visualization

Abstract

This chapter considers the role of three-dimensional animations in learning. ‘Going three-dimensional’ does not simply add a third dimension to conventional animations, but rather it can provide new types of animations that show static objects or scenes from changing viewpoints, improve perception of depth through stereoscopic projection, and offer additional types of interactivity beyond control of pacing. From a psychological perspective, these possibilities have implications for learning and understanding. In particular, the provision of a third dimension may be beneficial for building up appropriate mental representations, particularly when extension in space is relevant for comprehension. Three-dimensional animations also allow for a precise definition of viewpoint trajectories that may guide the viewers’ attention to relevant parts of objects or events. The chapter gives an overview of these issues, describes relevant empirical findings, and gives a balanced account of the benefits and drawbacks of using three-dimensional animations for learning and knowledge acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennett, D. J., & Vuong, Q. C. (2006). A stereo advantage in generalizing over changes in viewpoint on object recognition tasks. Perception & Psychophysics, 68, 1082–1093.

    Article  Google Scholar 

  • Berney, S., & Bétrancourt, M. (2017). Learning three-dimensional anatomical structures with animation: Effects of orientation references and learners’ spatial ability. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization — Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • Bivall, P., Ainsworth, S., & Tibell, L. A. E. (2011). Do haptic representations help complex molecular learning? Science Education, 95, 700–719.

    Article  Google Scholar 

  • Blanz, V., Tarr, M. J., & Bülthoff, H. H. (1999). What object attributes determine canonical views? Perception, 28, 575–599.

    Article  Google Scholar 

  • Bordwell, D., & Thompson, K. (1979). Film art: An introduction. New York: McGraw Hill.

    Google Scholar 

  • Boucheix, J.-M., Lowe, R. K., Putri, D. K., & Groff, J. (2013). Cueing animations: Dynamic signaling aids information extraction and comprehension. Learning and Instruction, 25, 71–84.

    Article  Google Scholar 

  • Burke, D. (2005). Combining disparate views of objects: Viewpoint costs are reduced by stereopsis. Visual Cognition, 12, 705–719.

    Article  Google Scholar 

  • Carrier, L. M., Rab, S. S., Rosen, L. D., Vasquez, L., & Cheever, N. A. (2012). Pathways for learning from 3D technology. International Journal of Environmental & Science Education, 7, 53–69.

    Google Scholar 

  • Dalgarno, B., & Lee, M. J. W. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41, 10–32.

    Article  Google Scholar 

  • De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2007). Attention guidance in learning from complex animation: Seeing is understanding? Learning and Instruction, 20, 111–122.

    Article  Google Scholar 

  • De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21, 113–140.

    Article  Google Scholar 

  • Diwadkar, V. A., & McNamara, T. P. (1997). Viewpoint dependence in scene recognition. Psychological Science, 8, 302–307.

    Article  Google Scholar 

  • Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Who needs 3D when the universe is flat? Science Education, 98, 412–442.

    Article  Google Scholar 

  • Fischer, S., Lowe, R. K., & Schwan, S. (2008). Effects of presentation speed of a dynamic visualization on the understanding of a mechanical system. Applied Cognitive Psychology, 22, 1126–1141.

    Article  Google Scholar 

  • Garg, A. X., Norman, G. R., Eva, K. W., Spero, L., & Sharan, S. (2002). Is there any real virtue of virtual reality? The minor role of multiple orientations in learning anatomy from computers. Academic Medicine, 77, S97–S99.

    Article  Google Scholar 

  • Garg, A., Norman, G. R., Spero, L., & Maheswari, P. (1999). Do virtual computer models hinder anatomy learning? Academic Medicine, 74, S87–S89.

    Article  Google Scholar 

  • Garsoffky, B., Huff, S., & Schwan, S. (2007). Changing viewpoints during dynamic events. Perception, 36, 366–374.

    Article  Google Scholar 

  • Garsoffky, B., Schwan, S., & Hesse, F. W. (2002). Viewpoint dependency in the recognition of dynamic scenes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 1035–1050.

    Google Scholar 

  • Garsoffky, B., Schwan, S., & Huff, M. (2009). Canonical views of dynamic scenes. Journal of Experimental Psychology: Human Perception and Performance, 35, 17–27.

    Google Scholar 

  • Glaser, M., Lengyel, D., Toulouse, C., & Schwan, S. (in press). Designing computer-based learning contents: Influence of digital zoom on attention. Education Technology Research and Development.

    Google Scholar 

  • Hasler, B. S., Kersten, B., & Sweller, J. (2007). Learner control, cognitive load and instructional animation. Applied Cognitive Psychology, 21, 713–729.

    Article  Google Scholar 

  • Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17, 722–738.

    Article  Google Scholar 

  • Huff, M., Jahn, G., & Schwan, S. (2009). Tracking multiple objects across abrupt viewpoint changes. Visual Cognition, 17, 297–306.

    Article  Google Scholar 

  • Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning, 22, 392–404.

    Google Scholar 

  • Huk, T., Steinke, M., & Floto, C. (2010). The educational value of visual cues and 3D-representational format in a computer animation under restricted and realistic conditions. Instructional Science, 38, 455–469.

    Article  Google Scholar 

  • Imhof, B., Scheiter, K., Edelmann, J., & Gerjets, P. (2012). How temporal and spatial aspects of presenting visualizations affect learning about locomotion patterns. Learning and Instruction, 22, 193–205.

    Google Scholar 

  • Jahn, G., Papenmeier, F., Meyerhoff, H. S., & Huff, M. (2012). Spatial reference in multiple object tracking. Experimental Psychology, 59, 163–173.

    Article  Google Scholar 

  • Jenkinson, J. (2017). The role of craft-based knowledge in the design of dynamic visualizations. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization — Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • Johnston, O., & Thomas, F. (1981). Disney animation: The illusion of life. New York: Walt Disney Productions.

    Google Scholar 

  • Kheener, M., Hegarty, M., Cohen, C., Khooshabeh, P., & Montello, D. R. (2008). Spatial reasoning with external visualizations: What matters is what you see, not whether you interact. Cognitive Science, 32, 1099–1132.

    Article  Google Scholar 

  • Khooshabeh, P., & Hegarty, M. (2010). Inferring cross-section: When internal visualizations are more important than properties of external visualizations. Human-Computer Interaction, 25, 119–147.

    Article  Google Scholar 

  • Lambooji, M., Fortuin, M., Heynderickx, I., & Ijsselsteijn, W. (2009). Visual discomfort and visual fatigue of stereoscopic displays: A review. Journal of Imaging Science and Technology, 53, 1–14.

    Google Scholar 

  • Lee, Y. L., & Saunders, J. A. (2011). Stereo improves 3D shape discrimination even when rich monocular shape cues are available. Journal of Vision, 11, 1–12.

    Google Scholar 

  • Liu, G., Austen, E. L., Booth, K. S., Fisher, B. D., Argue, R., Rempel, M. I., et al. (2005). Multiple-object tracking is based on scene, not retinal, coordinates. Journal of Experimental Psychology: Human Perception and Performance, 31, 235–247.

    Google Scholar 

  • Lowe, R., & Boucheix, J. M. (2008). Learning from animated diagrams: How are mental models built? In G. Stapleton, J. Howse, & J. Lee (Eds.), Diagrammatic representation and inference (pp. 266–281). Berlin: Springer.

    Chapter  Google Scholar 

  • Lowe, R., & Boucheix, J.-M. (2017). A composition approach to design of educational animations. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization — Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • Lowe, R., & Schnotz, W. (2014). Animation principles in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 513–546). Cambridge, MA: Cambridge University Press.

    Chapter  Google Scholar 

  • Lowe, R., Schnotz, W., & Rasch, T. (2011). Aligning affordances of graphics with learning task requirements. Applied Cognitive Psychology, 25, 452–459.

    Article  Google Scholar 

  • Luursema, J. M., Verwey, W. B., Kommers, P. A. M., & Annema, J. H. (2008). The role of stereopsis in virtual anatomical learning. Interacting with Computers, 20, 455–460.

    Article  Google Scholar 

  • Magner, U. I. E., Schwonke, R., Aleven, V., Popescu, O., & Renkl, A. (2014). Triggering situational interest by decorative illustrations both fosters and hinders learning in computer-based learning environments. Learning and Instruction, 29, 141–152.

    Article  Google Scholar 

  • Mayer, R. E., & Chandler, P. (2001). When learning is just a click away: Does simple user interaction foster deeper understanding of multimedia messages? Journal of Educational Psychology, 93, 390–397.

    Article  Google Scholar 

  • McClean, S. T. (2007). Digital storytelling. Cambridge, MA: MIT Press.

    Google Scholar 

  • McGill, G. (2017). Designing instructional science visualizations in the trenches: Where research meets production reality. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization — Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • McIntire, J. P., Havig, P. R., & Geiselman, E. E. (2014). Stereoscopic 3D displays and human performance: A comprehensive review. Displays, 35, 18–28.

    Article  Google Scholar 

  • Meesters, L. M. J., Ijsselsteijn, W. A., & Seuntiens, P. J. H. (2004). A survey of perceptual evaluations and requirments of three-dimensional TV. IEEE Transactions on Circuits and Systems for Video Technology, 14, 381–391.

    Article  Google Scholar 

  • Mendiburu, B. (2009). 3D movie making. London: Routledge.

    Google Scholar 

  • Meyer, K., Rasch, T., & Schnotz, W. (2010). Effects of animation’s speed of presentation on perceptual processing and learning. Learning and Instruction, 20, 136–145.

    Article  Google Scholar 

  • Meyerhoff, H. S., Huff, M., Papenmeier, F., Jahn, G., & Schwan, S. (2011). Continuous visual cues trigger automatic spatial target updating in dynamic scenes. Cognition, 121, 73–82.

    Article  Google Scholar 

  • Mital, P. K., Smith, T. J., Hill, R. L., & Henderson, J. M. (2011). Clustering of gaze during dynamic scene viewing is predicted by motion. Cognitive Computation, 3, 5–24.

    Article  Google Scholar 

  • Narayanan, N. H., & Hegarty, M. (2002). Multimedia design for communication of dynamic information. International Journal of Human-Computer Studies, 57, 279–315.

    Article  Google Scholar 

  • Nguyen, N., Nelson, A. J., & Wilson, T. D. (2012). Computer visualizations: Factors that influence spatial anatomy comprehension. Anatomical Sciences Education, 5, 98–108.

    Article  Google Scholar 

  • Palmer, S., Rosch, E., & Chase, P. (1981). Canonical perspective and the perception of objects. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 135–151). Hillsdale: Erlbaum.

    Google Scholar 

  • Papenmeier, F., Huff, M., & Schwan, S. (2012). Representation of dynamic spatial configurations in visual short-term memory. Attention, Perception, & Psychophysics, 74, 397–415.

    Article  Google Scholar 

  • Papenmeier, F., & Schwan, S. (2016). If you watch it move, you’ll recognize it in 3D: Transfer of depth cues between encoding and retrieval. Acta Psychologica, 164, 90–95.

    Article  Google Scholar 

  • Ploetzner, R., & Lowe, R. (2012). A systematic characterization of expository animations. Computers in Human Behavior, 28, 781–794.

    Article  Google Scholar 

  • Preece, D., Williams, S. B., Lam, R., & Weller, R. (2013). “Let’s get physical”: Advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anatomical Sciences Education, 6, 216–224.

    Article  Google Scholar 

  • Rey, G. D. (2012). A review of research and a meta-analysis of the seductive detail effect. Educational Research Review, 7, 216–237.

    Article  Google Scholar 

  • Schwan, S. (2013). The art of simplifying events. In A. P. Shimamura (Ed.), Psychocinematics: Exploring cognition at the movies (pp. 214–226). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Schwan, S., Lewalter, D., & Grajal, A. (2014). Understanding and engagement in places of science experience: Science museums, science centers, zoos and aquariums. Educational Psychologist, 49, 70–85.

    Article  Google Scholar 

  • Schwan, S., & Riempp, R. (2004). The cognitive benefits of interactive videos: Learning to tie nautical knots. Learning and Instruction, 14, 293–305.

    Article  Google Scholar 

  • Smith, T. J., Levin, D., & Cutting, J. E. (2012). A window on reality: Perceiving edited moving images. Current Directions in Psychological Science, 21, 107113.

    Article  Google Scholar 

  • Soemer, A., & Schwan, S. (2012). Visual mnemonics for language learning: Static pictures vs. animated morphs. Journal of Educational Psychology, 104, 565–579.

    Article  Google Scholar 

  • St. John, M., Cowen, M. B., Smallman, H. S., & Oonk, H. M. (2001). The use of 2D and 3D displays for shape-understanding versus relative-position tasks. Human Factors, 43, 79–98.

    Article  Google Scholar 

  • Stull, A. T., Hegarty, M., & Mayer, R. E. (2009). Getting a handle on learning anatomy with interactive three-dimensional graphics. Journal of Educational Psychology, 101, 803–816.

    Article  Google Scholar 

  • Tarr, M. J. (1995). Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects. Psychonomic Bulletin & Review, 2, 55–82.

    Article  Google Scholar 

  • Trindade, J., Fiolhais, C., & Almeida, L. (2002). Science learning in virtual environments: a descriptive study. British Journal of Educational Technology, 33, 471–488.

    Article  Google Scholar 

  • Tversky, B., Morrison, J. B., & Bétrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57, 247–262.

    Article  Google Scholar 

  • Ukai, K., & Howarth, P. A. (2008). Visual fatigue caused by viewing stereoscopic motion images: Background, theories, and observations. Displays, 29, 106–116.

    Article  Google Scholar 

  • Valsecchi, M., & Gegenfurtner, K. R. (2012). On the contribution of binocular disparity to the long-term memory for natural scenes. PlosOne, 7(11), e49947.

    Google Scholar 

  • Van Beurden, M. H. P. H., IJsselsteijn, W. A., & Juola, J. F. (2012). Effectiveness of stereoscopic displays in medicine: A review. 3D Research, 3, 1–13.

    Google Scholar 

  • Vishwanath, D., & Hibbard, P. B. (2013). Seeing in 3-D with just one eye: Stereopsis without binocular vision. Psychological Science, 24, 1673–1685.

    Article  Google Scholar 

  • Wouters, P., Tabbers, H. K., & Paas, F. (2007). Interactivity in video-based models. Educational Psychology Review, 19, 327–342.

    Article  Google Scholar 

  • Yuan, H., Calic, J., & Kondoz, A. (2012). Analysis of user requirements in interactive 3D video systems. Advances in Human-Computer Interaction, 2012, 1–11. ID 343197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Schwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schwan, S., Papenmeier, F. (2017). Learning from Animations: From 2D to 3D?. In: Lowe, R., Ploetzner, R. (eds) Learning from Dynamic Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-56204-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56204-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56202-5

  • Online ISBN: 978-3-319-56204-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics