Skip to main content

A Composition Approach to Design of Educational Animations

  • Chapter
  • First Online:

Abstract

The educational effectiveness of conventionally designed animations that portray complex, unfamiliar subject matter in a behaviorally realistic fashion too often falls well short of expectations. Previous research indicates that the veridical dynamic properties of these comprehensive animations make a major contribution to their lack of effectiveness. Due to these dynamics, there is a substantial mismatch between the processing demands these animations impose on learners and the characteristics of the human information processing system. As a result, the quality of the mental models that learners are able to construct is compromised. Interventions intended to improve learners’ processing of such animations have met with only limited success. This chapter argues that substantial gains in the educational effectiveness of animations will require a fundamental change in the assumptions underlying how they are designed. An alternative design approach based on the Animation Processing Model (APM) is outlined that aims to facilitate the learner’s composition of an internal representation by adopting a different perspective on the characteristics of the animation as an external representation. This Composition Approach presents learners with information in an incremental, cumulative manner that is better matched with their processing capacities. The practical application of this approach is illustrated and implications for future research are canvassed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ayres, P., Marcus, N., Chan, C., & Qian, N. (2009). Learning hand manipulative tasks: When instructional animations are superior to equivalent static representations. Computers in Human Behavior, 25, 348–353.

    Article  Google Scholar 

  • Ayres, P., & Pass, F. (2007). Making instructional animations more effective: A cognitive load approach. Applied Cognitive Psychology, 21, 695–700.

    Article  Google Scholar 

  • Bétrancourt, M., & Réalini, N. (2005, June). Faut il vraiment laisser le déroulement d’une animation sous le contrôle de l’apprenant? Paper presented at the 11th Journées d’Etude sur le Traitement Cognitif des Systèmes d’Information Complexes (JETCSIC), Nice.

    Google Scholar 

  • Boucheix, J.-M. (2008). Young learners’ control of technical animations. In R. K. Lowe & W. Schnotz (Eds.), Learning with animation: Research implications for design (pp. 208–234). New York: Cambridge University Press.

    Google Scholar 

  • Boucheix, J.-M., & Lowe, R. K. (2010). An eye tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction, 20, 123–135.

    Article  Google Scholar 

  • Boucheix, J.-M., Lowe, R. K., & Bugaiska, A. (2015). Age differences in learning from instructional animations. Applied Cognitive Psychology, 29, 524–535.

    Google Scholar 

  • Boucheix, J.-M., Lowe, R. K., Putri, D. K., & Groff, J. (2013). Cueing animations: Dynamic signaling aids information extraction and comprehension. Learning and Instruction, 25, 71–84.

    Article  Google Scholar 

  • Boucheix, J.-M., Lowe, R. K., & Soirat, A. (2006, August). Online processing of a complex technical animation: Eye tracking investigation during verbal description. Paper presented at the comprehension of text and graphics conference, University of Nottingham.

    Google Scholar 

  • De Koning, B. B., & Jarodzka, H. (2017). Attention guidance strategies for supporting learning from dynamic visualizations. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2007). Attention cueing as a means to enhance learning from an animation. Applied Cognitive Psychology, 21, 731–746.

    Article  Google Scholar 

  • De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21, 113–140.

    Article  Google Scholar 

  • Fischer, S., Lowe, R. K., & Schwan, S. (2008). Effects of presentation speed of a dynamic visualization on the understanding of a mechanical system. Applied Cognitive Psychology, 22, 1126–1141.

    Article  Google Scholar 

  • Hegarty, M., & Kriz, S. (2008). Effects of knowledge and spatial ability on learning from animation. In R. K. Lowe & W. Schnotz (Eds.), Learning with animation: Research implications for design (pp. 304–356). New York: Cambridge University Press.

    Google Scholar 

  • Jenkinson, J. (2017). The role of craft-based knowledge in the design of dynamic visualizations. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • Kriz, S., & Hegarty, M. (2007). Top-down and bottom-up influences on learning from animations. International Journal of Human Computer Studies, 65, 911–930.

    Article  Google Scholar 

  • Lowe, R. K. (1999). Extracting information from an animation during complex visual learning. European Journal of Psychology of Education, 14, 225–244.

    Article  Google Scholar 

  • Lowe, R. K. (2008). Learning from animation: Where to look, when to look. In R. K. Lowe & W. Schnotz (Eds.), Learning with animation: Research implications for design (pp. 49–68). New York: Cambridge University Press.

    Google Scholar 

  • Lowe, R. K., & Boucheix, J.-M. (2008a). Learning from animated diagrams: How are mental models built? In G. Stapleton, J. Howse, & J. Lee (Eds.), Diagrammatic representation and inference (pp. 266–281). Berlin: Springer.

    Chapter  Google Scholar 

  • Lowe, R. K., & Boucheix, J.-M. (2008b). Supporting relational processing in complex animated diagrams. In G. Stapleton, J. Howse, & J. Lee (Eds.), Diagrammatic representation and inference (pp. 391–394). Berlin: Springer.

    Chapter  Google Scholar 

  • Lowe, R. K., & Boucheix, J.-M. (2011). Cueing complex animation: Does direction of attention foster learning processes? Learning and Instruction, 21, 650–663.

    Article  Google Scholar 

  • Lowe, R. K., & Boucheix, J.-M. (2012a). Dynamic diagrams: A composition alternative. In P. Cox, B. Plimmer, & P. Rogers (Eds.), Diagrammatic representation and inference (pp. 233–240). Berlin: Springer.

    Chapter  Google Scholar 

  • Lowe, R. K., & Boucheix, J.-M. (2012b). Addressing challenges of biological animations. In E. de Vries & K. Scheiter (Eds.), Proceedings of the meeting of the EARLI special interest group on comprehension of text and graphics (pp. 217–129). Grenoble: University of Grenoble.

    Google Scholar 

  • Lowe, R. K., & Boucheix, J.-M. (2013, August). Principled animation design: A key to improving learning. Paper presented at the 15th Biennial EARLI conference for Research on Learning and Instruction, Munich.

    Google Scholar 

  • Lowe, R. K., & Boucheix, J.-M. (2016). Principled animation design improves comprehension of complex dynamics. Learning and Instruction, 45, 72–84.

    Google Scholar 

  • Lowe, R., Boucheix, J. M., & Fillisch, B. (2017). Demonstration tasks for assessment. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • Lowe, R., & Mason, L. (2017). Self-generated drawing: A help or hindrance to learning from animation? In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • Lowe, R. K., & Schnotz, W. (2014). Animation principles in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 513–546). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Mason, L., Lowe, R. K., & Tornatora, M. C. (2013). Self-generated drawings for supporting comprehension of a complex animation. Contemporary Educational Psychology, 38, 211–224.

    Article  Google Scholar 

  • Mayer, R. E., & Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual coding hypothesis. Journal of Educational Psychology, 83, 484–490.

    Article  Google Scholar 

  • Mayer, R. E., & Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology, 84, 444–452.

    Article  Google Scholar 

  • Mayer, R. E., & Chandler, P. (2001). When learning is just a click away: Does simple user interaction foster deeper understanding of multimedia messages? Journal of Educational Psychology, 93, 390–397.

    Article  Google Scholar 

  • Mayer, R. E., & Moreno, R. (2002). Animation as an aid to multimedia learning. Educational Psychology Review, 14, 87–99.

    Article  Google Scholar 

  • Paik, E. S., & Schraw, G. (2013). Learning with animation and illusions of understanding. Journal of Educational Psychology, 105, 449–457.

    Article  Google Scholar 

  • Ploetzner, R., & Breyer, B. (2017). Strategies for learning from animation with and without narration. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • Ploetzner, R., & Lowe, R. K. (2012). A systematic characterization of expository animations. Computers in Human Behavior, 28, 781–794.

    Article  Google Scholar 

  • Ploetzner, R., & Lowe, R. K. (2014). Simultaneously presented animations facilitate the learning of higher-order relationships. Computers in Human Behavior, 34, 12–22.

    Article  Google Scholar 

  • Ploetzner, R., & Lowe, R. (2017). Looking across instead of back and forth – How the simultaneous presentation of multiple animation episodes facilitates learning. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • Sanchez, C. A., & Wiley, J. (2017). Dynamic visuospatial ability and learning from dynamic visualizations. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • Schnotz, W., & Lowe, R. K. (2008). A unified view of learning from animated and static graphics. In R. K. Lowe & W. Schnotz (Eds.), Learning with animation: Research implications for design (pp. 304–356). New York: Cambridge University Press.

    Google Scholar 

  • Schwan, S., & Riempp, R. (2004). The cognitive benefits of interactive videos: Learning to tie nautical knots. Learning and Instruction, 14, 293–305.

    Article  Google Scholar 

  • Spanjers, I. A. E., Van Gog, T., & Van Merrienboer, J. J. G. (2010). A theoretical analysis of how segmentation of dynamic visualizations optimizes students’ learning. Educational Psychology Review, 22, 411–423.

    Article  Google Scholar 

  • Spanjers, I. A. E., Wouters, P., van Gog, T., & van Merriënboer, J. J. G. (2011). An expertise reversal effect of segmentation in learning from animated worked out examples. Computers in Human Behavior, 27, 46–52.

    Article  Google Scholar 

  • Tversky, B., Heiser, J., Mackenzie, R., Lozano, S., & Morrison, J. (2008). Enriching animations. In R. K. Lowe & W. Schnotz (Eds.), Learning with animation: Research implications for design (pp. 263–285). New York: Cambridge University Press.

    Google Scholar 

  • Van Gog, T. (2014). The signaling (or cueing) principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 263–278). New York: Cambridge University Press.

    Google Scholar 

  • Van Patten, J., Chao, C. I., & Reigeluth, C. M. (1986). A review of strategies for sequencing and synthesizing instruction. Review of Educational Research, 56, 437–471.

    Article  Google Scholar 

  • Wagner, I., & Schnotz, W. (2017). Learning from static and dynamic visualizations: What kind of questions should we ask? In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • Wong, A., Leahy, W., Marcus, N., & Sweller, J. (2012). Cognitive load theory, the transient information effect and e-learning. Learning and Instruction, 22, 449–457.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Lowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lowe, R., Boucheix, JM. (2017). A Composition Approach to Design of Educational Animations. In: Lowe, R., Ploetzner, R. (eds) Learning from Dynamic Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-56204-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56204-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56202-5

  • Online ISBN: 978-3-319-56204-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics