Advertisement

Physical and Morphological Changes to Wetlands Induced by Coastal Structures

  • Germán Daniel Rivillas-OspinaEmail author
  • Gabriel Ruiz-Martinez
  • Rodolfo Silva
  • Edgar Mendoza
  • Carlos Pacheco
  • Guillermo Acuña
  • Juan Rueda
  • Angélica Felix
  • Jesús Pérez
  • Carlos Pinilla
Chapter
Part of the Coastal Research Library book series (COASTALRL, volume 21)

Abstract

This document is focused on the establishment of a methodology to assess erosive processes in a coastal wetland. Particularly, it analyses the spit that separates the lagoon from the sea, elaborating a diagnostic process that helps to characterize the effect of the coastal infrastructure in morphological changes in a short and medium-term. Elements such as the morphology, the wave climate, the hydrodynamic and the evolution monitoring of coastline are key elements to understand whether a coastal wetland is on equilibrium or in the contrary, its state of vulnerability is such that in the slightest change in physics conditions will produce negative effects by the system instability.

Generally, it describes the procedure performed to properly understand the relation between modifications of coastal processes and the response of a coastal environment. It uses numerical and theoretical models to assess the behavior of the waterfront, considering the historical changes that have occurred to ultimately predict variations of the spit as consequence of the establishment of new civil works. Finally, it concludes with this method of analysis that the evaluated study case will be affected by the works of action to be developed for facilitating the navigability conditions of a new port currently under construction in the city of Barranquilla, Colombia.

Keywords

Ciénaga de Mallorquín Coastal wetland Coastal erosion Morphological changes Port SANDY® Wave climate 

Notes

Acknowledgements

To coastal engineering group of the Universidad del Norte, integrated by Marianella Bolivar, Alejandra Builes, Ximena Arguelles, Vilma Álvarez y Carlos Ramos. Institute for Hydraulic and Environmental studies (IDEHA) and EAFIT University for the help during the field work.

References

  1. Brunn P (1994) Engineering projects in coastal lagoons. In: Kjerfve B (ed) Coastal lagoon process. Elsevier Oceanography Series. Netherlands, 60, p 27Google Scholar
  2. Brunn P, Gerritsen F (1961) Stability of coastal inlets. In: Proceedings of the 7th on coastal engineering, pp 386–417Google Scholar
  3. Brunn P, Gerritsen F (1961) Stability of coastal inlets. In: Council on Wave Research (ed) Proceedings of the 7th on coastal engineering. North-Holland Publishing Company, The Hague, pp 386–417Google Scholar
  4. Builes, Ximena Arguelles, Vilma Álvarez y Carlos Ramos. Institute for Hydraulic and Environmental studies (IDEHA) and EAFIT University for the help during the field workGoogle Scholar
  5. Cartwright D (2001) Tides: a scientific history. Cambridge University Press, CambridgeGoogle Scholar
  6. CIOH (2010) Climatología de los principales puertos del Caribe colombiano. DIMAR, 19 https://www.cioh.org.co/meteorologia/ClimatologiaGoogle Scholar
  7. Cooper J, Pilkey O (2004) Longshore drift: trapped in an expected Universe. J Sediment Res 74(5):599–606Google Scholar
  8. COP07, R (1999) Séptima reunión de la conferencia de las partes contratantes en la convención de humedales. (COP-7) San José de Costa RicaGoogle Scholar
  9. Del Rio L, Gracia F (2009) Erosion risk assessment of active coastal cliffs in temperature environments. Geomorphology 112:82–95CrossRefGoogle Scholar
  10. Dronkers J, Schonfeld J (1959) Tidal computations in shallow water. Report on hydrostatic levelling across the Westerschelde. Rijswaterstaat, Netherlands, p 88Google Scholar
  11. Hsu JRC, Evans C (2009) Parabolic bay shapes and applications. Proc. Instn Civ. Engrs 87:557–570 Google Scholar
  12. Inman D (1952) Measures for describing size of sediments. J Sediment Res 22:125–145Google Scholar
  13. Javrejeva S, Moore J, Grinsted A (2012) Sea level projections to AD2500 with a new generation of climate change scenarios. Glob Planet Chang 80–81:14–20CrossRefGoogle Scholar
  14. Kjerfve B (1986) Comparative oceanography of coastal lagoons. In: Wolfe DA (ed) Estuarine variability. Academic Press, The Netherlands, pp 63–81CrossRefGoogle Scholar
  15. Komar P (1998) Beach process and sedimentation. Prentice Hall, Upper Saddle RiverGoogle Scholar
  16. Krumbein W (1936) Application of logarithmic momentos to size frequen-cy distributions of sediments. J Sediment Petrol 6:35–47Google Scholar
  17. Krumbein W (1947) Shore process and beach characteristics. In: US Beach Erosion Board (ed) Technical memorandum n.3. Engineer Research and Development Center, US., p 35Google Scholar
  18. Le Provost C, Genco M, Lyard F, Vincent P, Canceil P (1994) Tidal spectroscopy of the world ocean tides from a finite element hydrodynamic model. J Geophys Res 99(C12):24777–24798CrossRefGoogle Scholar
  19. LeBlond P (1979) An explanation of the logarithmic spiral plan shape of headland-bay beaches. J Sediment Petrol 49(4):1093–1100Google Scholar
  20. Martínez JO, Pilkey OH Jr, Neal WJ (1990) Rapid formation of large coastal sand bodies after emplacement of Magdalena River Jetties, Nothern, Colombia. Environ Geol Water Sci 16(3):187–194CrossRefGoogle Scholar
  21. Mitch W, Gosselink J (1993) Wetlands, 2nd edn. Van Norstrand Re-inthold, New York. 722 ppGoogle Scholar
  22. Raabe ALA, Klein AH, González M, Medina R (2010) MEPBAY and SMC: software tools to support different operational levels of headland-bay beach in coastal engineering projects. Coastal Eng 57:213–226CrossRefGoogle Scholar
  23. Ramsar COP07 (1999) Séptima reunión de la conferencia de las partes contratantes en la convención de humedales (COP-7). San José de Costa RicaGoogle Scholar
  24. Ruiz G (2004) Modelos para determinar la geomorfología de la línea de playa en costas en equilibrio. Instituto Politécnico Nacional. Tesis, 261ppGoogle Scholar
  25. Ruiz G (2006) Caracterización geomorfológica de la línea de costa del Estado de Quintana Roo, México (Caso Cancún). En memorias del XIX Congreso Nacional de Hidráulica (CD), 6 ppGoogle Scholar
  26. Ruiz G (2009) Determinación de los estados morfodinámicos de segmentos de playa que poseen obstáculos sumergidos y emergidos. Universidad Nacional Autónoma de México. Tesis, 198 ppGoogle Scholar
  27. Ruiz G, Rivillas-Ospina G, Mariño I, Posada G (2016) Sandy: a Matlab tool to estimate the sediment size distribution from a sieve analysis. Comput Geosci 92:104–116Google Scholar
  28. Silvester R, Tsuchiya Y, Shibano Y (1980) Zeta Bays, pocket beaches and headland control. Proceedings 17th. Conference on Coastal Engineering, ASCE:, pp 1306–1319Google Scholar
  29. Tanner WF (1958) The equilibrium beach. Eos Trans Am Geophys Union 39:889–891CrossRefGoogle Scholar
  30. Thieler ER, Himmelstoss EA, Zichichi JL, Ergul A (2009) The digital Shoreline Analysis System (DSAS) Version 4.0 – an ArcGIS extension for calculating shoreline change. Open-File Report. US Geological Survey Report No. 2008–1278: http://woodshole.er.usgs.gov/projectpages/dsas/version4/
  31. Thornbury WD (1954) Principles of geomorphology. John Wiley and Sons, Inc., HobokenGoogle Scholar
  32. Uittenbogaard R., Van Kester J, Stelling G (1992) Report Z81 implementation of three turbulence models in 3D–TRISULA for rectangular grids. Delft Hydraulics. NetherlandsGoogle Scholar
  33. Van Rijn L (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, AmsterdamGoogle Scholar
  34. Woodroffe C (2003) Coasts: forms, process and evolution. Cambridge University Press, CambridgeGoogle Scholar
  35. Yasso W (1965) Plan geometry of headland bay beaches. J Geol Div 73:702–714CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Germán Daniel Rivillas-Ospina
    • 1
    Email author
  • Gabriel Ruiz-Martinez
    • 2
  • Rodolfo Silva
    • 3
  • Edgar Mendoza
    • 3
  • Carlos Pacheco
    • 1
  • Guillermo Acuña
    • 1
  • Juan Rueda
    • 1
  • Angélica Felix
    • 3
  • Jesús Pérez
    • 4
  • Carlos Pinilla
    • 5
  1. 1.Departamento de Ingeniería Civil y Ambiental. PIANC-COLOMBIAUniversidad del NortePuerto ColombiaColombia
  2. 2.Departmento de Recursos del MarCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMéridaMéxico
  3. 3.Coordinación de Hidráulica, Instituto de IngenieríaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  4. 4.Departamento de Ingeniería CivilUniversidad EAFITMedellínColombia
  5. 5.Departmento de FísicaUniversidad del NortePuerto ColombiaColombia

Personalised recommendations