Advertisement

Handling High Soil Trace Elements Pollution: Case Study of the Odiel and Tinto Rivers Estuary and the Accompanying Salt Marshes (Southwest Iberian Peninsula)

  • Sara Muñoz VallésEmail author
  • Jesús Cambrollé
  • Jesús M. Castillo
  • Guillermo Curado
  • Juan Manuel Mancilla-Leytón
  • M. Enrique Figueroa-Clemente
Chapter
Part of the Coastal Research Library book series (COASTALRL, volume 21)

Abstract

Salt marshes are being increasingly polluted by trace elements, and the design and implementation of management actions adapted to each particular situation are necessary. Salt marshes developed at one of the most heavy metal-polluted systems in the world, the Odiel and Tinto joint estuary, are threatened by high pollution levels, erosion and the invasion of the alien plant species Spartina densiflora, despite the high ecological values recognized by regional to international protection figures. Soft management on these marshes tries to preserve the equilibrium between conservation and decontamination. The ability of key native halophytes in the area to phytoextract or phytostabilizate trace elements has been taking into account. A local restoration project has resulted in a rapid recovery of the native prairies of low tidal marshes, dominated by S. maritima, becoming a promising tool to phytostabilize eroding areas in European marshes. These prairies also seem to stop the advance of the alien S. densiflora invasion and prevent erosion. On the other hand, areas invaded by S. densiflora are difficult to manage due to the acidity and pollution level of sediments preventing the establishment of any other plant species. Despite its invasive character, S. densiflora avoid at present the removal of highly toxic sediments and the trace element release to the food chain in this area.

Keywords

Salt marshes Contamination Trace elements Management Invasion Phytoremediation Restoration SW Iberian Peninsula 

References

  1. Almeida CMR, Mucha AP, Vasconcelos MTSD (2006) Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environ Pollut 142:151–159CrossRefGoogle Scholar
  2. Álvarez Rogel J, Ortiz Silla R, Alcaraz Ariza F (2001) Edaphic characterization and soil ionic composition influencing plant zonation in a semiarid Mediterranean salt marsh. Geoderma 99:81–98CrossRefGoogle Scholar
  3. Andrades-Moreno L, Cambrollé J, Figueroa ME, Mateos-Naranjo E (2013) Growth and survival of Halimione portulacoides stem cuttings in heavy metal contaminated soils. Mar Pollut Bull 75:28–32CrossRefGoogle Scholar
  4. Aranda Y, Otero M (2014) Estudio de las figuras de protección de áreas marinas protegidas de Andalucía con fanerógamas marinas y propuestas de mejora para su gestión. Anexo VI. Anexo VI. Marismas del Odiel (LIC; Paraje Natural, Humedal Ramsar y Reserva de Biosfera). IUCN, Málaga. 20 ppGoogle Scholar
  5. Beeftink WG (1977) Salt-marshes. In: Barnes RSK (ed) The coastline. Wiley, New York, pp 93–121Google Scholar
  6. Bertness MD (1991) Interspecific interactions among high marsh perennials in a New England salt marsh. Ecology 72:125–137CrossRefGoogle Scholar
  7. Bolívar JP, García-Tenorio R, Vaca F (2000) Radioecological study of an estuarine system located in the south of Spain. Water Res 34:2941–2950CrossRefGoogle Scholar
  8. Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916CrossRefGoogle Scholar
  9. Bryan GW, Gibbs PE (1983) Heavy metals in the Fal estuary, Cornwall: a study oflong term contamination by mining waste and its effects on estuarine organisms. Occ. Pub. of the MBA. No.2Google Scholar
  10. Caçador I, Vale C, Catarino F (2000) Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes. Mar Environ Res 49:279–290CrossRefGoogle Scholar
  11. Cambrollé J, Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042CrossRefGoogle Scholar
  12. Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Luque T, Figueroa ME (2012a) Tolerance and accumulation of copper in the salt-marsh shrub Halimione portulacoides. Mar Pollut Bull 64:721–728CrossRefGoogle Scholar
  13. Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Luque T, Figueroa ME (2012b) Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere 86:867–874CrossRefGoogle Scholar
  14. Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Figueroa-Luque E, Luque T, Figueroa ME (2013) Effects of copper sulfate on growth and physiological responses of Limoniastrum monopetalum. Environ Sci Poll Res 20:8839–8847CrossRefGoogle Scholar
  15. Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Cambrón-Sena A, Figueroa ME (2016) Advances in the use of Halimione portulacoides stem cuttings for phytoremediation of Zn-polluted soils. Estuar Coast Shelf Sci 175:10–11CrossRefGoogle Scholar
  16. Carnevale NJ, Torres P, Boccanelli SI, Lewis JP (1987) Halophilous communities and species distributions along environmental gradients in South-Eastern Santa Fe Province, Argentina. Coenoses 2:49–60Google Scholar
  17. Castellanos EM, Figueroa ME, Davy AJ (1994) Nucleation and facilitation in saltmarsh succession: interactions between Spartina maritima and Arthrocnemum perenne. J Ecol 82:239–248CrossRefGoogle Scholar
  18. Castellanos EM, Heredia C, Figueroa ME, Davy AJ (1998) Tiller dynamics in Spartina maritima in successional and non-successional Mediterranean salt marsh. Plant Ecol 137:213–225CrossRefGoogle Scholar
  19. Castillo JM, Figueroa E (2009) Restoring salt marshes using small cordgrass, Spartina maritima. Restor Ecol 17:324–326CrossRefGoogle Scholar
  20. Castillo JM, Fernández-Baco L, Castellanos EM, Luque CJ, Figueroa ME, Davy AJ (2000) Lower limits of Spartina densiflora and S. maritima in the salt-marsh tidal frame detemined by differential ecophysiological tolerances. J Ecol 88:801–812CrossRefGoogle Scholar
  21. Castillo JM, Rubio-Casal AE, Luque CJ, Nieva FJ, Figueroa ME (2002) Wetland loss by erosion in Odiel marshes. J Coast Res 36:134–138Google Scholar
  22. Castillo JM, Redondo S, Wharmby C, Figueroa ME, Castellanos EM, Luque T, Davy AJ (2005) Environmental determination of shoot height in populations of the cordgrass Spartina maritima. Estuaries 28:761–766CrossRefGoogle Scholar
  23. Castillo J, Mateos-Naranjo E, Nieva FJ, Figueroa E (2008a) Plant zonation at salt marshes of the endangered cordgrass Spartina maritima invaded by Spartina densiflora. Hydrobiologia 614:363–371CrossRefGoogle Scholar
  24. Castillo JM, Leira-Doce P, Rubio-Casal AE, Figueroa E (2008b) Spatial and temporal variations in aboveground and belowground biomass of Spartina maritima (small cordgrass) in created and natural marshes. Estuar Coast Shelf Sci 78:819–826CrossRefGoogle Scholar
  25. Chapman VJ (1950) Biological flora of the British Isles: Atriplex portulacoides (L.) Aell. J Ecol 38:214–222CrossRefGoogle Scholar
  26. Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cycles 17(4):1–11CrossRefGoogle Scholar
  27. Costa CSB, Marangoni JC, Azevedo AMG (2003) Plant zonation in irregularly flooded salt marshes: relative importante of stress tolerante and biological interactions. J Ecol 91:951–965CrossRefGoogle Scholar
  28. Costanza R, Perez-Maqueo O, Martinez ML, Sutton P, Anderson SJ, Mulder K (2008) The value of coastal wetlands for hurricane protection. Ambio 37:241–248CrossRefGoogle Scholar
  29. Curado G, Rubio-Casal AE, Figueroa E, Castillo JM (2010) Germination and establishment of the invasive cordgrass Spartina densiflora in acidic and metal polluted sediments of the Tinto River. Mar Pollut Bull 60:1842–1848CrossRefGoogle Scholar
  30. Curado G, Figueroa ME, Castillo JM (2012) Vertical sediment dynamic in Spartina maritima restored, non-restored and preserved marshes. Ecol Eng 47:30–35CrossRefGoogle Scholar
  31. Curado G, Rubio-Casal AE, Figueroa E, Castillo JM (2013a) Potential of Spartina maritima in restored salt marshes for phytoremediation of metals in a highly polluted estuary. Int J Phytoremediat 16:1209–1220CrossRefGoogle Scholar
  32. Curado G, Figueroa E, Sánchez MI, Castillo JM (2013b) Avian communities in Spartina maritima restored and non-restored salt marshes. Bird Study 60(2):185–194CrossRefGoogle Scholar
  33. Curado G, Rubio-Casal AE, Figueroa E, Grewell BJ, Castillo JM (2013c) Native plant restoration combats environmental change: development of carbon and nitrogen sequestration capacity using small cordgrass in European salt marshes. Environ Monit Assess 185:8439–8449CrossRefGoogle Scholar
  34. Curado G, Grewell B, Rubio-Casal AE, Figueroa ME, Castillo JM (2014a) Effectiveness of the aquatic halophyte Sarcocornia perennis spp. perennis as a biotool for ecological restoration of salt marshes. Water Air Soil Pollut 225:2108CrossRefGoogle Scholar
  35. Curado G, Rubio-Casal AE, Figueroa ME, Castillo JM (2014b) Plant zonation in restored, nonrestored, and preserved Spartina maritima salt marshes. J Coast Res 3:629–634CrossRefGoogle Scholar
  36. Curado G, Sánchez-Moyano JE, Figueroa E, Castillo JM (2014c) Do Spartina maritima plantations enhance the macroinvertebrate community in European salt marshes? Estuar Coasts 37(3):589–601CrossRefGoogle Scholar
  37. Davy AJ, Costa CSB (1992) Development and organization of Saltmarsh communities. In: Seeliger U (ed) Coastal plant communities of Latin America. Academic, San Diego, pp 157–178CrossRefGoogle Scholar
  38. Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM (2012) Coastal eutrophication as a driver of salt marsh loss. Nature 490:388–392CrossRefGoogle Scholar
  39. Doyle MO, Otte ML (1997) Organism-induced accumulation of iron, zinc and arsenic in wetlands soils. Environ Pollut 96:1–11CrossRefGoogle Scholar
  40. Duarte B, Delgado M, Caçador I (2007) The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere 69:836–840CrossRefGoogle Scholar
  41. Egal M, Elbaz-Poulichet F, Casiot C, Motelica-Heino M, Négrel P, Bruneel O, Sarmiento OM, Nieto JM (2008) Iron isotopes in acid mine waters and iron-rich solids from the Tinto-Odiel Basin (Iberian Pyrite Belt, Southwest Spain). Chem Geol 253:162–171CrossRefGoogle Scholar
  42. El Mrabet R, Abril JM, Majon G, Tenorio RG (2001) Experimental and modelling study of plutonium uptake by suspended matter in aquatic environments from southern Spain. Water Res 35:4184–4190CrossRefGoogle Scholar
  43. Elbaz-Poulichet F, Morley NH, Cruzado A, Velasquez Z, Achterberg EP, Braungardt CB (1999) Trace metal and nutrient distribution in an extremely low pH (2.5) river-estuarine system, the Ria of Huelva (South-West Spain). Sci Total Environ 227:73–83CrossRefGoogle Scholar
  44. Elbaz-Poulichet F, Dupuy C, Cruzado A, Velasquez Z, Achterberg EP, Braungardt CB (2000) Influence of sorption processes by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto river, Spain). Water Res 34:3222–3230CrossRefGoogle Scholar
  45. Elbaz-Poulichet F, Braungardt C, Achterberg E, Morley N, Cossa D, Beckers JM, Nomerange P, Cruzado A, Leblanc M (2001) Metal biogeochemistry in the Tinto-Odiel rivers (Southern Spain) and in the Gulf of Cadiz: a synthesis of the results of TOROS project. Cont Shelf Res 21:1961–1973CrossRefGoogle Scholar
  46. Ferns PN (1992) Bird life of coasts and estuaries. Cambridge University Press, CambridgeGoogle Scholar
  47. Figueroa ME, Castillo JM, Redondo S, Luque T, Castellanos EM, Nieva FJ, Luque CJ, Rubio-Casal AE, Davy AJ (2003) Facilitated invasion by hybridization of Sarcocornia species in a salt-marsh succession. J Ecol 91:616–626CrossRefGoogle Scholar
  48. Galán E, Carretero MI, Fernandez-Caliani JC (1999) Effects of acid mine drainage on clay minerals suspended in the Tinto River (Rio Tinto, Spain). An experimental approach. Clay Miner 34:99–108CrossRefGoogle Scholar
  49. Gedan KB, Silliman BR, Bertness MD (2009) Centuries of human-driven change in salt marsh ecosystems. Annu Rev Mar Sci 1:117–141CrossRefGoogle Scholar
  50. Gedan KB, Kirwan ML, Wolanski E, Barbier EB, Silliman BR (2011) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim Chang 106:7–29CrossRefGoogle Scholar
  51. Grande JA, Borrego J, Morales JA, de la Torre ML (2003) A description of how metal pollution occurs in the Tinto-Odiel rias (Huelva-Spain) through the application of cluster analysis. Mar Pollut Bull 46:475–480CrossRefGoogle Scholar
  52. Handa IT, Jefferies RL (2000) Assisted revegetation trials in degraded salt-marshes. J Appl Ecol 37(6):944–958CrossRefGoogle Scholar
  53. Heckman CW (1990) The fate of aquatic and wetland habitats in an industrially contaminated section of the Elbe floodplain in Hamburg. Arch Hydrobiol 75:133–250Google Scholar
  54. Howe MA (1987) Wetlands and waterbird conservation. Am Birds 41:204–209Google Scholar
  55. Hughes RG (2004) Climate change and loss of saltmarshes: consequences for birds. Ibis 146:21–28CrossRefGoogle Scholar
  56. Jacob DL, Otte ML (2003) Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization? Water Air Soil Pollut 3:91–104CrossRefGoogle Scholar
  57. Kabata-Pendias A (2004) Soil–plant transfer of trace elements—an environmental issue. Geoderma 122:143–149CrossRefGoogle Scholar
  58. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, FloridaGoogle Scholar
  59. Laegdsgaard P (2006) Ecology, disturbance and restoration of coastal saltmarsh in Australia: a review. Wetl Ecol Manag 14:379–399CrossRefGoogle Scholar
  60. Leblanc M, Morales JA, Borrego J, Elbaz-Poulichet F (2000) 4,500-year-old mining pollution in southwestern Spain: long-term implications for modern mining pollution. Econ Geol Bull Soc 95:655–661Google Scholar
  61. Leistel JM, Marcoux E, Thiéblemont D, Quesada C, Sánchez A, Almodóvar GR, Pascual E, Sáez R et al (1997) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt Review and preface to the Thematic Issue. Mineral Deposita 33:2–30CrossRefGoogle Scholar
  62. Lopez-Archilla AI, Marín I, Amils R (1993) Bioleaching and interrelated acidophilic microorganisms from rio-Tinto, Spain. Geomicrobiol J 11:223–233CrossRefGoogle Scholar
  63. Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115:509–552CrossRefGoogle Scholar
  64. Mahmoud-Abbas A (2012) Germination and establishment of the invasive Spartina densiflora. PhD Thesis, University of SevilleGoogle Scholar
  65. Mancilla-Leytón JM, Navarro-Ramos MJ, Muñoz-Vallés S, Figueroa ME, Cambrollé J (2016) Evaluation of the potential of Atriplex halimus stem cuttings for phytoremediation of metal-polluted soils. Ecol Eng 97:553–557CrossRefGoogle Scholar
  66. Mateos-Naranjo E, Andrades-Moreno L, Cambrollé J, Perez-Martin A (2013) Assessing the effect of copper on growth, copper accumulation and physiological responses of grazing species Atriplex halimus: ecotoxicological implications. Ecotoxicol Environ Saf 90:136–142CrossRefGoogle Scholar
  67. Mendez MO, Maier R (2008) Phytostabilization of mine tailings in arid and semi-arid environments–an emerging remediation technology. Environ Health Perspect 116:278–283CrossRefGoogle Scholar
  68. Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID (2015) Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils. Front Microbiol 6:1450CrossRefGoogle Scholar
  69. Milić D, Luković J, Ninkov J, Zeremski-Škorić T, Zorić L, Vasin J, Milić S (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol 7:307–317Google Scholar
  70. Milliman JD, Emery KO (1968) Sea levels during the past 35,000 years. Science 162:1121–1123CrossRefGoogle Scholar
  71. Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, HobokenGoogle Scholar
  72. Möller I, Kudella M, Rupprecht F, Spencer T, Paul M, van Wesenbeeck B, Wolters K, Jensen G, Bouma K, Miranda-Lange TJ (2014) Schimmels MS (2014) Wave attenuation over coastal salt marshes under storm surge conditions. Nat Geosci 7:727–731CrossRefGoogle Scholar
  73. Montpetit E, Lachapelle E (2016) Information, values and expert decision-making: the case of soil decontamination. Policy Sci 49(2):155–171CrossRefGoogle Scholar
  74. Morillo J, Usero J, Gracia I (2002) Heavy metal fractionation in sediments from the Tinto River (Spain). Int J Environ Anal Chem 82:245–257CrossRefGoogle Scholar
  75. Nelson CH, Lamothe PJ (1993) Heavy metal anomalies in the Tinto and Odiel River and estuary system, Spain. Estuaries 16:496–511CrossRefGoogle Scholar
  76. Nieva FJJ, Luque C (1996) Odiel Marshes In: Murillo C, González L (eds) Management of mediterranean wetlands III. Ministerio de Medio Ambiente, Spain, pp 381–399Google Scholar
  77. Nieva FJ, Díaz-Espejo A, Castellanos EM, Figueroa ME (2001) Field variability of invading populations of Spartina densiflora Brong. in different habitats of the Odiel Marshes (SW Spain). Estuar Coast Shelf Sci 52:515–527CrossRefGoogle Scholar
  78. Olff H, de Leeuw J, Bakker JP, Platerink RJ, van Wijnen HJ, de Munck W (1997) Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. J Ecol 85:799–814CrossRefGoogle Scholar
  79. Paredes-Páliz KI, Caviedes MA, Doukkali B, Mateos-Naranjo E, Rodríguez-Llorente ID, Pajuelo E (2016) Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains. Environ Sci Pollut Res 23:19825–19837CrossRefGoogle Scholar
  80. Pennings SC, Callaway RM (1992) Salt marsh zonation: the relative importance of competition and physical factors. Ecology 73:681–690CrossRefGoogle Scholar
  81. Pérez-López R, Nieto JM, López-Coto I, Aguado JL, Bolívar JP, Santisteban M (2010) Dynamics of contaminants in phosphogypsum of the fertilizer industry of Huelva (SW Spain): from phosphate rock ore to the environment. Appl Geochem 25:705–715CrossRefGoogle Scholar
  82. Pérez-Romero JA, Redondo-Gómez S, Mateos-Naranjo E (2016) Growth and photosynthetic limitation analysis of the Cd-accumulator Salicornia ramosissima under excessive cadmium concentrations and optimum salinity conditions. Plant Physiol Biochem 109:103–113CrossRefGoogle Scholar
  83. Ranwell DS (1972) 258 pp. In: Ecology of salt marshes and sand dunes. Chapman and Hall, LondonGoogle Scholar
  84. Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater 184:299–307CrossRefGoogle Scholar
  85. Rodríguez Ramírez A, Ruiz F, Cáceres LM, Rodríguez Vidal J, Pino R, Muñoz JM (2003) Analysis of the recent storm record in the southwestern Spanish coast: implications for littoral management. Sci Total Environ 303:189–201CrossRefGoogle Scholar
  86. Rosso PH, Pushnik JC, Lay M, Ustin SL (2005) Reflectance properties andphysiological responses of Salicornia virginica to heavy metal and petroleumcontamination. Environ Pollut 137:241–252CrossRefGoogle Scholar
  87. Sainz A, Loredo J (2005) Tinto River pollution: remediation versus conservation. Proceedings of the 9th International Mine Water Association (IMWA):563–568Google Scholar
  88. Sainz A, Grande JA, de la Torre ML (2004) Characterization of heavy metal discharge into the Ria of Huelva. Environ Int 30:557–566CrossRefGoogle Scholar
  89. Sánchez MI, Green AJ, Castellanos EM (2006) Spatial and temporal fluctuations in use by shorebirds and in availability of chironomid prey in the Odiel saltpans, south-west Spain. Hydrobiologia 567:329–340Google Scholar
  90. Shenker JM, Dean JM (1979) The utilization of an interintertidal salt marsh creek by larval and juvenile fishes: abundance, diversity and temporal variation. Estuaries 2(3):154–163CrossRefGoogle Scholar
  91. Smillie C (2015) Salicornia spp. as a biomonitor of Cu and Zn in salt marsh sediments. Ecol Indic 56:70–78CrossRefGoogle Scholar
  92. Sousa AI, Caçador I, Lillebo AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-celular metal binding sites. Chemosphere 70:850–857CrossRefGoogle Scholar
  93. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land: a review. Environ Chem Lett 8(1):1–17CrossRefGoogle Scholar
  94. Van Geen A, Adkins JF, Boyle EA, Nelson CH, Palanques A (1997) A 120 yr record of widespread contamination from mining of the Iberian pyrite belt. Geology 25:291–294CrossRefGoogle Scholar
  95. Vázquez MD, Fernández JA, López J, Carballeira A (2000) Effects of water acidity and metal concentration on accumulation and within-plant distribution of metals in the aquatic bryophyte Fontinalis antipyretica. Water Air Soil Pollut 120:1–19CrossRefGoogle Scholar
  96. Vince SW, Snow AA (1984) Plant zonation in an Alaskan salt marsh I. Distribution, abundance and environmental factors. J Ecol 72:651–667CrossRefGoogle Scholar
  97. Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700CrossRefGoogle Scholar
  98. Weis P, Windham L, Burke DJ, Weis JS (2002) Release into the environment of metals by two vascular salt marsh plants. Mar Environ Res 54:325–329CrossRefGoogle Scholar
  99. Williams TP, Bubb JM, Lester JN (1994) The occurrence and distribution of tracemetals in halophytes. Chemosphere 28:1189–1199CrossRefGoogle Scholar
  100. Windham L, Weis JS, Weis P (2003) Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar Coast Shelf Sci 56:63–72CrossRefGoogle Scholar
  101. Ye ZH, Cheung KC, Wong MH (2003) Cadmium and nickel adsorption and uptake in cattail as affected by iron and manganese plaque on the root surface. Commun Soil Sci Plant Anal 34:2763–2778CrossRefGoogle Scholar
  102. Zimmerman RJ, Minello TJ, Rozas LP (2000) Salt marsh linkages to productivity of penaeid shrimps and blue crabs in the northern Gulf of Mexico. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, Dordrecht, pp 293–314Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sara Muñoz Vallés
    • 1
    • 2
    Email author
  • Jesús Cambrollé
    • 1
  • Jesús M. Castillo
    • 1
  • Guillermo Curado
    • 1
  • Juan Manuel Mancilla-Leytón
    • 1
  • M. Enrique Figueroa-Clemente
    • 1
  1. 1.Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevilleSpain
  2. 2.Evenor-Tech. Centro de Empresas Pabellón de ItaliaSevilleSpain

Personalised recommendations