Recent Agricultural Occupation and Environmental Regeneration of Salt Marshes in Northern Spain

  • Ane García-ArtolaEmail author
  • Alejandro Cearreta
  • María Jesús Irabien
Part of the Coastal Research Library book series (COASTALRL, volume 21)


Salt marshes reduce wave energy and offer natural protection from storms and floods. In the last centuries these coastal areas have been intensely impacted by human activities worldwide. In northern Spain, more than 50% of the original salt marshes have been reclaimed with agricultural purposes since the 17th century. However, many of these coastal wetlands have been recovered since the agricultural decline during the 1950s. Benthic foraminifera and sand content can be used as proxies to identify past episodes of salt-marsh reclamation and to analyze the environmental regeneration process of previously occupied lands. Foraminifera are absent in agricultural soils and increase in abundance during the regeneration of the area, until total recovery is reached. Similarly, sand content increases as tidal inundation takes place during the environmental regeneration period. The physical disturbance originated by reclamation presents a challenge for the 210Pb dating method. Nevertheless, historical aerial photography provides a good record for age estimation. This can be supported by chronostratigraphic horizons of major pollution events and nuclear weapon testing (i.e. heavy metals and 137Cs). In the current context of sea-level rise, sediment supply constrains the environmental regeneration of salt marshes. In northern Spain, abundant regional sediment input is available, allowing high sedimentation rates to happen during the regeneration process and facilitating adaptation to ongoing sea-level rise. Therefore, restoration of currently reclaimed tidal wetlands in global temperate coastal areas, with abundant sediment supply, can be considered as a soft adaptation measure against climate change consequences in the coastal zone.


Salt marsh Sedimentary record Human impact Environmental regeneration Sea-level rise 



This research was funded by the ANTROPICOSTA-Anthropocene sedimentary record in the Cantabrian coastal environments (MINECO, CGL2013-41083-P), Formation and Research Unit in Quaternary: Environmental Changes and Human Fingerprint (UPV/EHU, UFI11/09) and HAREA-Coastal Geology Research Group (EJ/GV, IT976-16) projects. It is contribution 38 of the Geo-Q Zentroa Research Unit (Joaquín Gómez de Llarena Laboratory). This chapter represents a synthesis of Ane García-Artola’s doctoral research funded by the Basque Government (BFI08.180) and numerous papers published by the authors on this geographical area over the last decade. Illustrations are original or modified from previously published versions.


  1. Ackermann F (1980) A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments. Environ Technol Lett 1(11):518–527CrossRefGoogle Scholar
  2. Allen JRL (2009) Tidal salt marshes: geomorphology and sedimentology. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 403–424Google Scholar
  3. Alve E, Murray JW (2001) Temporal variability in vertical distributions of live (stained) intertidal foraminifera, Southern England. J Foraminifer Res 31(1):12–24CrossRefGoogle Scholar
  4. Andersen TJ, Svinth S, Pejrup M (2011) Temporal variation of accumulation rates on a natural salt marsh in the 20th century – the impact of sea level rise and increased inundation frequency. Mar Geol 279(1–4):178–187CrossRefGoogle Scholar
  5. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 171–203Google Scholar
  6. Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5(1):1–8CrossRefGoogle Scholar
  7. Armstrong HA, Brasier MD (2005) Microfossils (2nd edition). Blackwell Publishing, OxfordGoogle Scholar
  8. Bartholdy J, Pedersen JBT, Bartholdy AT (2010) Autocompaction of shallow silty salt marsh clay. Sediment Geol 223(3–4):310–319CrossRefGoogle Scholar
  9. Caballero A, Chust G, Cearreta A, Leorri E, Irabien MJ, García-Artola A (2011) Cambios proyectados en el océano: calentamiento, acidificación y ascenso del nivel del mar. In: Vasco G (ed) Cambio Climático. Impacto y adaptación en la Comunidad Autónoma del País Vasco. Servicio Central de Publicaciones del Gobierno Vasco, Vitoria-Gasteiz, pp 22–25Google Scholar
  10. Cearreta A (1988) Distribution and ecology of benthic foraminifera in the Santoña estuary, Spain. Rev Esp Paleontología 3(1):23–38Google Scholar
  11. Cearreta A (1989) Foraminiferal assemblages in the ria of San Vicente de la Barquera (Cantabria, Spain). Rev Esp Micropaleontol 21(1):67–80Google Scholar
  12. Cearreta A, Murray JW (2000) AMS 14C dating of Holocene estuarine deposits: consequences of high energy and reworked foraminifera. The Holocene 10(1):155–159CrossRefGoogle Scholar
  13. Cearreta A, Irabien MJ, Leorri E, Yusta I, Croudace IW, Cundy AB (2000) Recent anthropogenic impacts on the Bilbao Estuary, Northern Spain: geochemical and microfaunal evidence. Estuar Coast Shelf Sci 50(4):571–592CrossRefGoogle Scholar
  14. Cearreta A, Irabien MJ, Ulibarri I, Yusta I, Croudace IW, Cundy AB (2002) Recent salt marsh development and natural regeneration of reclaimed areas in the Plentzia Estuary, N. Spain. Estuar Coast Shelf Sci 54(5):863–886CrossRefGoogle Scholar
  15. Cearreta A, Irabien MJ, Pascual A (2004) Chapter 2: Human activities along the Basque coast during the last two centuries: geological perspective of recent anthropogenic impact on the coast and its environmental consequences. In: Borja Á, Collins M (eds) Oceanography and marine environment of the Basque Country, Elsevier Oceanography Series 70. Elsevier, Amsterdam, pp 27–50CrossRefGoogle Scholar
  16. Cearreta A, Leorri E, Iriondo I, González MJ, Aristondo O (2008) Quantitative tools for environmental reconstructions of the recent estuarine infill using benthic foraminifera. Geogaceta 45:67–70Google Scholar
  17. Cearreta A, García-Artola A, Leorri E (2011) Las marismas de la Ría de Plentzia (Bizkaia) como archivos de la historia local y global. Lankidetzan Bilduma de Eusko Ikaskuntza 57:261–273Google Scholar
  18. Cearreta A, García-Artola A, Leorri E, Irabien MJ, Masque P (2013) Recent environmental evolution of regenerated salt marshes in the southern Bay of Biscay: anthropogenic evidences in their sedimentary record. J Mar Syst 109–110(Supplement):S203–S212CrossRefGoogle Scholar
  19. Chang ER, Veeneklaas RM, Bakker JP, Daniels P, Esselink P (2016) What factors determined restoration success of a salt marsh ten years after de-embankment? Appl Veg Sci 19(1):66–77CrossRefGoogle Scholar
  20. Cheng H, Hu Y (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China. Environ Pollut 158(5):1134–1146CrossRefGoogle Scholar
  21. Chust G, Galparsoro I, Borja Á, Franco J, Beltrán B, Uriarte A (2007) Detección de cambios recientes en la costa vasca mediante ortofotografía. Lurralde 30:59–72Google Scholar
  22. Chust G, Borja Á, Liria P, Galparsoro I, Marcos M, Caballero A, Castro R (2009) Human impacts overwhelm the effects of sea-level rise on Basque coastal habitats (N Spain) between 1954 and 2004. Estuar Coast Shelf Sci 84(4):453–462CrossRefGoogle Scholar
  23. Cochran JK, Masque P (2005) Chapter 1 Natural radionuclides applied to coastal zone processes. In: Livingston HD (ed) Radioactivity in the Environment, Marine radioactivity, vol 6. Elsevier, Amsterdam, pp 1–21Google Scholar
  24. Costanza R, Pérez-Maqueo O, Martinez ML, Sutton P, Anderson SJ, Mulder K (2008) The value of coastal wetlands for hurricane protection. AMBIO J Hum Environ 37(4):241–248CrossRefGoogle Scholar
  25. Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines. Environ Geol 30(1–2):34–45CrossRefGoogle Scholar
  26. Cundy AB, Croudace IW (1996) Sediment accretion and recent sea-level rise in the Solent, Southern England: inferences from radiometric and geochemical studies. Estuar Coast Shelf Sci 43(4):449–467CrossRefGoogle Scholar
  27. Day JW, Kemp GP, Reed DJ, Cahoon DR, Boumans RM, Suhayda JM, Gambrell R (2011) Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: the role of sedimentation, autocompaction and sea-level rise. Ecol Eng 37(2):229–240CrossRefGoogle Scholar
  28. Edwards R, Wright A (2015) Foraminifera. In: Shennan I, Long AJ, Horton BP (eds) Handbook of sea-level research. Wiley, Oxford, pp 191–217Google Scholar
  29. Elbaz-Poulichet F, Dezileau L, Freydier R, Cossa D, Sabatier P (2011) A 3500-year record of Hg and Pb contamination in a mediterranean sedimentary archive (The Pierre Blanche Lagoon, France). Environ Sci Technol 45(20):8642–8647CrossRefGoogle Scholar
  30. Fatela F, Moreno J, Moreno F, Araújo MF, Valente T, Antunes C, Taborda R, Andrade C, Drago T (2009) Environmental constraints of foraminiferal assemblages distribution across a brackish tidal marsh (Caminha, NW Portugal). Mar Micropaleontol 70(1–2):70–88CrossRefGoogle Scholar
  31. Fernández S, Santín C, Marquínez J, Álvarez MA (2010) Saltmarsh soil evolution after land reclamation in Atlantic estuaries (Bay of Biscay, North coast of Spain). Geomorphology 114(4):497–507CrossRefGoogle Scholar
  32. French PW (2006) Managed realignment – the developing story of a comparatively new approach to soft engineering. Estuar Coast Shelf Sci 67(3):409–423CrossRefGoogle Scholar
  33. Garbutt A, Wolters M (2008) The natural regeneration of salt marsh on formerly reclaimed land. Appl Veg Sci 11(3):335–344CrossRefGoogle Scholar
  34. García-Artola A, Cearreta A, Leorri E, Irabien MJ (2011) Regeneración ambiental de marismas a partir de ocupaciones antrópicas de zonas costeras: interés de su estudio en el escenario actual de ascenso marino. Geogaceta 50(2):161–164Google Scholar
  35. García-Artola A, Cearreta A, Leorri E (2015) Relative sea-level changes in the Basque coast (Northern Spain, Bay of Biscay) during the holocene and anthropocene: the Urdaibai estuary case. Quat Int 364:172–180CrossRefGoogle Scholar
  36. García-Artola A, Cearreta A, Irabien MJ, Leorri E, Sanchez-Cabeza J-A, Corbett DR (2016) Agricultural fingerprints in salt-marsh sediments and adaptation to sea-level rise in the eastern Cantabrian coast (N. Spain). Estuar Coast Shelf Sci 171:66–76CrossRefGoogle Scholar
  37. Gedan K, Kirwan M, Wolanski E, Barbier E, Silliman B (2011) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim Chang 106(1):7–29CrossRefGoogle Scholar
  38. Gobierno Vasco (1998) Avance del plan territorial sectorial de zonas húmedas de la Comunidad Autónoma del País Vasco. Servicio Central de Publicaciones del Gobierno Vasco, Vitoria-GasteizGoogle Scholar
  39. Gogeascoechea A, Juaristi J (1997) Aprovechamientos históricos y privatización de las marismas del Urdaibai. Lurralde 20:169–189Google Scholar
  40. Goldstein ST, Watkins GT (1999) Taphonomy of salt marsh foraminifera: an example from coastal Georgia. Palaeogeogr Palaeoclimatol Palaeoecol 149(1–4):103–114CrossRefGoogle Scholar
  41. Goodman JE, Wood ME, Gehrels WR (2007) A 17-yr record of sediment accretion in the salt marshes of Maine (USA). Mar Geol 242(1–3):109–121CrossRefGoogle Scholar
  42. Hippensteel SP, Martin RE, Nikitina D, Pizzuto JE (2000) The formation of holocene marsh foraminiferal assemblages, middle Atlantic coast, USA: implications for the holocene sea-level change. J Foraminifer Res 30(4):272–293CrossRefGoogle Scholar
  43. Hormaza JM (1998) Gentes de Plasentia de Butrón-Plencia, In: Ayuntamiento de Plentzia, Fundación de Bilbao Bizkaia Kutxa (eds), Plasentia de Butrón-Plencia-Plentzia. Apuntes II, pp. 99–117Google Scholar
  44. Horton BP (1999) The distribution of contemporary intertidal foraminifera at Cowpen Marsh, Tees Estuary, UK: implications for studies of holocene sea-level changes. Palaeogeogr Palaeoclimatol Palaeoecol 149(1–4):127–149CrossRefGoogle Scholar
  45. Irabien MJ, Velasco F (1999) Heavy metals in Oka river sediments (Urdaibai National Biosphere Reserve, Northern Spain): lithogenic and anthropogenic effects. Environ Geol 37(1):54–63CrossRefGoogle Scholar
  46. Irabien MJ, Cearreta A, Leorri E, Gómez J, Viguri J (2008a) A 130 year record of pollution in the Suances estuary (Southern Bay of Biscay): implications for environmental management. Mar Pollut Bull 56(10):1719–1727CrossRefGoogle Scholar
  47. Irabien MJ, Rada M, Gómez J, Soto J, Mañanes A, Viguri J (2008b) An assessment of anthropogenic impact in a nature reserve: the Santoña Marshes (Northern Spain). J Iber Geol 34(2):235–242Google Scholar
  48. Irabien MJ, Cearreta A, Urteaga M (2012) Historical signature of Roman mining activities in the Bidasoa estuary (Basque Country, Northern Spain): an integrated micropalaeontological, geochemical and archaeological approach. J Archaeol Sci 39(7):2361–2370CrossRefGoogle Scholar
  49. Irabien MJ, García-Artola A, Cearreta A, Leorri E (2015) Chemostratigraphic and lithostratigraphic signatures of the anthropocene in estuarine areas from the eastern Cantabrian coast (N. Spain). Quat Int 364:196–205CrossRefGoogle Scholar
  50. Kirwan ML, Blum LK (2011) Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences 8(4):987–993CrossRefGoogle Scholar
  51. Landajo A, Arana G, de Diego A, Etxebarria N, Zuloaga O, Amouroux D (2004) Analysis of heavy metal distribution in superficial estuarine sediments (estuary of Bilbao, Basque Country) by open-focused microwave-assisted extraction and ICP-OES. Chemosphere 56(11):1033–1041CrossRefGoogle Scholar
  52. Leorri E, Cearreta A (2004) Holocene environmental development of the Bilbao estuary, Northern Spain: sequence stratigraphy and foraminiferal interpretation. Mar Micropaleontol 51(1–2):75–94CrossRefGoogle Scholar
  53. Leorri E, Horton BP, Cearreta A (2008) Development of a foraminifera-based transfer function in the Basque marshes, N. Spain: implications for sea-level studies in the bay of Biscay. Mar Geol 251(1):60–74CrossRefGoogle Scholar
  54. Leorri E, Cearreta A, Milne G (2012) Field observations and modelling of holocene sea-level changes in the southern bay of Biscay: implication for understanding current rates of relative sea-level change and vertical land motion along the Atlantic coast of SW Europe. Quat Sci Rev 42:59–73CrossRefGoogle Scholar
  55. Leorri E, Cearreta A, García-Artola A, Irabien MJ, Blake WH (2013) Relative sea-level rise in the Basque coast (N Spain): different environmental consequences on the coastal area. Ocean Coast Manag 77:3–13CrossRefGoogle Scholar
  56. Leorri E, Cearreta A, Irabien MJ, García-Artola A, Corbett DR, Horsman E, Blake WH, Sanchez-Cabeza J-A (2014a) Anthropogenic disruptions of the sedimentary record in coastal marshes: examples from the southern Bay of Biscay (N. Spain). Cont Shelf Res 86:132–140CrossRefGoogle Scholar
  57. Leorri E, Mitra S, Irabien MJ, Zimmerman AR, Blake WH, Cearreta A (2014b) A 700 year record of combustion-derived pollution in Northern Spain: tools to identify the holocene/anthropocene transition in coastal environments. Sci Total Environ 470–471:240–247CrossRefGoogle Scholar
  58. Lowe JJ, Walker MJC (1997) Reconstructing quaternary environments (2nd edition). Longman, LondonGoogle Scholar
  59. Marshall W (2015) Chronohorizons: indirect and unique event dating methods for sea-level reconstructions. In: Shennan I, Long AJ, Horton BP (eds) Handbook of sea-level research. Wiley, Oxford, pp 373–385Google Scholar
  60. Martínez Cedrún P (1984) Dinámica y sedimentación en el estuario de Asón (Cantabria). Trab Geol Univ de Oviedo 14:175–197Google Scholar
  61. Mil-Homens M, Stevens RL, Boer W, Abrantes F, Cato I (2006) Pollution history of heavy metals on the Portuguese shelf using 210Pb-geochronology. Sci Total Environ 367(1):466–480CrossRefGoogle Scholar
  62. Monge-Ganuzas M, Cearreta A, Iriarte E (2008) Consequences of estuarine sand dredging and dumping on the Urdaibai reserve of the biosphere (Bay of Biscay): the case of the “Mundaka left wave”. J Iber Geol 34(2):215–234Google Scholar
  63. Monge-Ganuzas M, Cearreta A, Evans G, Leorri E, Irabien MJ, García-Artola A, Iriarte E (2011) Dinámica sedimentaria actual en el estuario del Oka. In: Onaindia M, Ibabe A, Unzueta J (eds) Guía científica de Urdaibai, Cátedra UNESCO sobre Desarrollo Sostenible y Educación Ambiental de la UPV/EHU, pp 407–427Google Scholar
  64. Mudd SM, D’Alpaos A, Morris JT (2010) How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J Geophys Res Earth 115(F3):F03029Google Scholar
  65. Murray JW (1979) British nearshore foraminiferids. Synopses of the British Fauna (New Series), vol 16. Synopsis of the British Fauna (New Series). Academic Press, LondonGoogle Scholar
  66. Murray JW, Alve E (2011) The distribution of agglutinated foraminifera in NW European seas: baseline data for the interpretation of fossil assemblages. Palaeontol Electron 14(2):1–42Google Scholar
  67. Olendrzyński K, Anderberg S, Stigliani W, Bartnicki J, Pacyna J (1996) Atmospheric emissions and depositions of cadmium, lead, and zinc in Europe during the period 1955–1987. Environ Rev 4(4):300–320CrossRefGoogle Scholar
  68. Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D, Nitter S, Pregger T, Pfeiffer H, Friedrich R (2007) Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmos Environ 41(38):8557–8566CrossRefGoogle Scholar
  69. Patterson RT, Guilbault J-P, Clague JJ (1999) Taphonomy of tidal marsh foraminifera: implications of surface sample thickness for high-resolution sea-level studies. Palaeogeogr Palaeoclimatol Palaeoecol 149(1–4):199–211CrossRefGoogle Scholar
  70. Ritchie JC, McHenry JR (1990) Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19(2):215–233CrossRefGoogle Scholar
  71. Rivas V, Cendrero A (1991) Use of natural and artificial accretion on the north coast of Spain: historical trends and assessment of some environmental and economic consequences. J Coast Res 7(2):491–507Google Scholar
  72. Roman CT, Burdick DM (2012) Tidal marsh restoration: a synthesis of science and management. Island Press, WashingtonCrossRefGoogle Scholar
  73. Sanchez-Cabeza J-A, Masqué P, Ani-Ragolta I (1998) 210Pb and 210Po analysis in sediments and soils by microwave acid digestion. J Radioanal Nucl Chem 227(1):19–22CrossRefGoogle Scholar
  74. Sanchez-Cabeza J-A, Ruiz-Fernández AC (2012) 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta 82:183–200CrossRefGoogle Scholar
  75. Santín C, de la Rosa JM, Knicker H, Otero XL, Álvarez MÁ, González-Vila FJ (2009) Effects of reclamation and regeneration processes on organic matter from estuarine soils and sediments. Org Geochem 40(9):931–941CrossRefGoogle Scholar
  76. Sarkar SK, Bilinski SF, Bhattacharya A, Saha M, Bilinski H (2004) Levels of elements in the surficial estuarine sediments of the Hugli River, Northeast India and their environmental implications. Environ Int 30(8):1089–1098CrossRefGoogle Scholar
  77. Schropp SJ, Lewis FG, Windom HL, Ryan JD, Calder FD, Burney LC (1990) Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries 13(3):227–235CrossRefGoogle Scholar
  78. Shepard CC, Crain CM, Beck MW (2011) The protective role of coastal marshes: a systematic review and meta-analysis. PLoS One 6(11):e27374CrossRefGoogle Scholar
  79. Temmerman S, Govers G, Wartel S, Meire P (2004) Modelling estuarine variations in tidal marsh sedimentation: response to changing sea level and suspended sediment concentrations. Mar Geol 212(1–4):1–19CrossRefGoogle Scholar
  80. van Wijnen HJ, Bakker JP (2001) Long-term surface elevation change in salt marshes: a prediction of marsh response to future sea-level rise. Estuar Coast Shelf Sci 52(3):381–390CrossRefGoogle Scholar
  81. Villate F, Valencia V, Urrutia J (1990) Estudio hidrográfico, sedimentológico y de metales pesados en las rías del Bidasoa y Plencia. Informes Técnicos del Departamento de Agricultura y Pesca del Gobierno Vasco 32:1–100Google Scholar
  82. Weis JS, Butler CA (2009) Salt marshes: a natural and unnatural history. Rutgers University Press, PiscatawayGoogle Scholar
  83. Weiss D, Shotyk W, Kempf O (1999) Archives of atmospheric lead pollution. Naturwissenschaften 86(6):262–275CrossRefGoogle Scholar
  84. Zapata L (2005) Agricultura prehistórica en el País Vasco litoral. Munibe (Antropol-Arkeologia) 57:553–561Google Scholar

Microfaunal Reference List

  1. Ammonia tepida (Cushman) = Rotalia beccarii (Linné) var. tepida Cushman, 1926Google Scholar
  2. Arenoparrella mexicana (Kornfeld) = Trochammina inflata (Montagu) var. mexicana Kornfeld, 1931Google Scholar
  3. Elphidium oceanense (d’Orbigny) = Polystomella oceanensis d’Orbigny, 1826Google Scholar
  4. Elphidium williamsoni Haynes, 1973Google Scholar
  5. Entzia macrescens (Brady) = Trochammina inflata (Montagu) var. macrescens Brady, 1870Google Scholar
  6. Haplophragmoides wilberti Andersen, 1953Google Scholar
  7. Haynesina germanica (Ehrenberg) = Nonium germanicum Ehrenberg, 1840Google Scholar
  8. Lobatula lobatula (Walker and Jacob) = Nautilus lobatulus Walker and Jacob, 1798Google Scholar
  9. Miliammina fusca (Brady) = Quinqueloculina fusca Brady, 1870Google Scholar
  10. Scherochorella moniliformis (Siddall) = Reophax moniliforme Siddall, 1886Google Scholar
  11. Trochammina inflata (Montagu) = Nautilus inflatus Montagu, 1808Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ane García-Artola
    • 1
    • 2
    • 3
    Email author
  • Alejandro Cearreta
    • 3
  • María Jesús Irabien
    • 4
  1. 1.Sea Level Research, Department of Marine and Coastal ScienceRutgers UniversityNew BrunswickUSA
  2. 2.Sociedad de Ciencias AranzadiDonostia-San SebastiánSpain
  3. 3.Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco UPV/EHUBilbaoSpain
  4. 4.Departamento de Mineralogía y Petrología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco UPV/EHUBilbaoSpain

Personalised recommendations