Skip to main content

Recent Agricultural Occupation and Environmental Regeneration of Salt Marshes in Northern Spain

  • Chapter
  • First Online:
Book cover Coastal Wetlands: Alteration and Remediation

Part of the book series: Coastal Research Library ((COASTALRL,volume 21))

Abstract

Salt marshes reduce wave energy and offer natural protection from storms and floods. In the last centuries these coastal areas have been intensely impacted by human activities worldwide. In northern Spain, more than 50% of the original salt marshes have been reclaimed with agricultural purposes since the 17th century. However, many of these coastal wetlands have been recovered since the agricultural decline during the 1950s. Benthic foraminifera and sand content can be used as proxies to identify past episodes of salt-marsh reclamation and to analyze the environmental regeneration process of previously occupied lands. Foraminifera are absent in agricultural soils and increase in abundance during the regeneration of the area, until total recovery is reached. Similarly, sand content increases as tidal inundation takes place during the environmental regeneration period. The physical disturbance originated by reclamation presents a challenge for the 210Pb dating method. Nevertheless, historical aerial photography provides a good record for age estimation. This can be supported by chronostratigraphic horizons of major pollution events and nuclear weapon testing (i.e. heavy metals and 137Cs). In the current context of sea-level rise, sediment supply constrains the environmental regeneration of salt marshes. In northern Spain, abundant regional sediment input is available, allowing high sedimentation rates to happen during the regeneration process and facilitating adaptation to ongoing sea-level rise. Therefore, restoration of currently reclaimed tidal wetlands in global temperate coastal areas, with abundant sediment supply, can be considered as a soft adaptation measure against climate change consequences in the coastal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann F (1980) A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments. Environ Technol Lett 1(11):518–527

    Article  Google Scholar 

  • Allen JRL (2009) Tidal salt marshes: geomorphology and sedimentology. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 403–424

    Google Scholar 

  • Alve E, Murray JW (2001) Temporal variability in vertical distributions of live (stained) intertidal foraminifera, Southern England. J Foraminifer Res 31(1):12–24

    Article  Google Scholar 

  • Andersen TJ, Svinth S, Pejrup M (2011) Temporal variation of accumulation rates on a natural salt marsh in the 20th century – the impact of sea level rise and increased inundation frequency. Mar Geol 279(1–4):178–187

    Article  Google Scholar 

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 171–203

    Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5(1):1–8

    Article  Google Scholar 

  • Armstrong HA, Brasier MD (2005) Microfossils (2nd edition). Blackwell Publishing, Oxford

    Google Scholar 

  • Bartholdy J, Pedersen JBT, Bartholdy AT (2010) Autocompaction of shallow silty salt marsh clay. Sediment Geol 223(3–4):310–319

    Article  Google Scholar 

  • Caballero A, Chust G, Cearreta A, Leorri E, Irabien MJ, García-Artola A (2011) Cambios proyectados en el océano: calentamiento, acidificación y ascenso del nivel del mar. In: Vasco G (ed) Cambio Climático. Impacto y adaptación en la Comunidad Autónoma del País Vasco. Servicio Central de Publicaciones del Gobierno Vasco, Vitoria-Gasteiz, pp 22–25

    Google Scholar 

  • Cearreta A (1988) Distribution and ecology of benthic foraminifera in the Santoña estuary, Spain. Rev Esp Paleontología 3(1):23–38

    Google Scholar 

  • Cearreta A (1989) Foraminiferal assemblages in the ria of San Vicente de la Barquera (Cantabria, Spain). Rev Esp Micropaleontol 21(1):67–80

    Google Scholar 

  • Cearreta A, Murray JW (2000) AMS 14C dating of Holocene estuarine deposits: consequences of high energy and reworked foraminifera. The Holocene 10(1):155–159

    Article  Google Scholar 

  • Cearreta A, Irabien MJ, Leorri E, Yusta I, Croudace IW, Cundy AB (2000) Recent anthropogenic impacts on the Bilbao Estuary, Northern Spain: geochemical and microfaunal evidence. Estuar Coast Shelf Sci 50(4):571–592

    Article  Google Scholar 

  • Cearreta A, Irabien MJ, Ulibarri I, Yusta I, Croudace IW, Cundy AB (2002) Recent salt marsh development and natural regeneration of reclaimed areas in the Plentzia Estuary, N. Spain. Estuar Coast Shelf Sci 54(5):863–886

    Article  Google Scholar 

  • Cearreta A, Irabien MJ, Pascual A (2004) Chapter 2: Human activities along the Basque coast during the last two centuries: geological perspective of recent anthropogenic impact on the coast and its environmental consequences. In: Borja Á, Collins M (eds) Oceanography and marine environment of the Basque Country, Elsevier Oceanography Series 70. Elsevier, Amsterdam, pp 27–50

    Chapter  Google Scholar 

  • Cearreta A, Leorri E, Iriondo I, González MJ, Aristondo O (2008) Quantitative tools for environmental reconstructions of the recent estuarine infill using benthic foraminifera. Geogaceta 45:67–70

    Google Scholar 

  • Cearreta A, García-Artola A, Leorri E (2011) Las marismas de la Ría de Plentzia (Bizkaia) como archivos de la historia local y global. Lankidetzan Bilduma de Eusko Ikaskuntza 57:261–273

    Google Scholar 

  • Cearreta A, García-Artola A, Leorri E, Irabien MJ, Masque P (2013) Recent environmental evolution of regenerated salt marshes in the southern Bay of Biscay: anthropogenic evidences in their sedimentary record. J Mar Syst 109–110(Supplement):S203–S212

    Article  Google Scholar 

  • Chang ER, Veeneklaas RM, Bakker JP, Daniels P, Esselink P (2016) What factors determined restoration success of a salt marsh ten years after de-embankment? Appl Veg Sci 19(1):66–77

    Article  Google Scholar 

  • Cheng H, Hu Y (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China. Environ Pollut 158(5):1134–1146

    Article  Google Scholar 

  • Chust G, Galparsoro I, Borja Á, Franco J, Beltrán B, Uriarte A (2007) Detección de cambios recientes en la costa vasca mediante ortofotografía. Lurralde 30:59–72

    Google Scholar 

  • Chust G, Borja Á, Liria P, Galparsoro I, Marcos M, Caballero A, Castro R (2009) Human impacts overwhelm the effects of sea-level rise on Basque coastal habitats (N Spain) between 1954 and 2004. Estuar Coast Shelf Sci 84(4):453–462

    Article  Google Scholar 

  • Cochran JK, Masque P (2005) Chapter 1 Natural radionuclides applied to coastal zone processes. In: Livingston HD (ed) Radioactivity in the Environment, Marine radioactivity, vol 6. Elsevier, Amsterdam, pp 1–21

    Google Scholar 

  • Costanza R, Pérez-Maqueo O, Martinez ML, Sutton P, Anderson SJ, Mulder K (2008) The value of coastal wetlands for hurricane protection. AMBIO J Hum Environ 37(4):241–248

    Article  Google Scholar 

  • Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines. Environ Geol 30(1–2):34–45

    Article  Google Scholar 

  • Cundy AB, Croudace IW (1996) Sediment accretion and recent sea-level rise in the Solent, Southern England: inferences from radiometric and geochemical studies. Estuar Coast Shelf Sci 43(4):449–467

    Article  Google Scholar 

  • Day JW, Kemp GP, Reed DJ, Cahoon DR, Boumans RM, Suhayda JM, Gambrell R (2011) Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: the role of sedimentation, autocompaction and sea-level rise. Ecol Eng 37(2):229–240

    Article  Google Scholar 

  • Edwards R, Wright A (2015) Foraminifera. In: Shennan I, Long AJ, Horton BP (eds) Handbook of sea-level research. Wiley, Oxford, pp 191–217

    Google Scholar 

  • Elbaz-Poulichet F, Dezileau L, Freydier R, Cossa D, Sabatier P (2011) A 3500-year record of Hg and Pb contamination in a mediterranean sedimentary archive (The Pierre Blanche Lagoon, France). Environ Sci Technol 45(20):8642–8647

    Article  Google Scholar 

  • Fatela F, Moreno J, Moreno F, Araújo MF, Valente T, Antunes C, Taborda R, Andrade C, Drago T (2009) Environmental constraints of foraminiferal assemblages distribution across a brackish tidal marsh (Caminha, NW Portugal). Mar Micropaleontol 70(1–2):70–88

    Article  Google Scholar 

  • Fernández S, Santín C, Marquínez J, Álvarez MA (2010) Saltmarsh soil evolution after land reclamation in Atlantic estuaries (Bay of Biscay, North coast of Spain). Geomorphology 114(4):497–507

    Article  Google Scholar 

  • French PW (2006) Managed realignment – the developing story of a comparatively new approach to soft engineering. Estuar Coast Shelf Sci 67(3):409–423

    Article  Google Scholar 

  • Garbutt A, Wolters M (2008) The natural regeneration of salt marsh on formerly reclaimed land. Appl Veg Sci 11(3):335–344

    Article  Google Scholar 

  • García-Artola A, Cearreta A, Leorri E, Irabien MJ (2011) Regeneración ambiental de marismas a partir de ocupaciones antrópicas de zonas costeras: interés de su estudio en el escenario actual de ascenso marino. Geogaceta 50(2):161–164

    Google Scholar 

  • García-Artola A, Cearreta A, Leorri E (2015) Relative sea-level changes in the Basque coast (Northern Spain, Bay of Biscay) during the holocene and anthropocene: the Urdaibai estuary case. Quat Int 364:172–180

    Article  Google Scholar 

  • García-Artola A, Cearreta A, Irabien MJ, Leorri E, Sanchez-Cabeza J-A, Corbett DR (2016) Agricultural fingerprints in salt-marsh sediments and adaptation to sea-level rise in the eastern Cantabrian coast (N. Spain). Estuar Coast Shelf Sci 171:66–76

    Article  Google Scholar 

  • Gedan K, Kirwan M, Wolanski E, Barbier E, Silliman B (2011) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim Chang 106(1):7–29

    Article  Google Scholar 

  • Gobierno Vasco (1998) Avance del plan territorial sectorial de zonas húmedas de la Comunidad Autónoma del País Vasco. Servicio Central de Publicaciones del Gobierno Vasco, Vitoria-Gasteiz

    Google Scholar 

  • Gogeascoechea A, Juaristi J (1997) Aprovechamientos históricos y privatización de las marismas del Urdaibai. Lurralde 20:169–189

    Google Scholar 

  • Goldstein ST, Watkins GT (1999) Taphonomy of salt marsh foraminifera: an example from coastal Georgia. Palaeogeogr Palaeoclimatol Palaeoecol 149(1–4):103–114

    Article  Google Scholar 

  • Goodman JE, Wood ME, Gehrels WR (2007) A 17-yr record of sediment accretion in the salt marshes of Maine (USA). Mar Geol 242(1–3):109–121

    Article  Google Scholar 

  • Hippensteel SP, Martin RE, Nikitina D, Pizzuto JE (2000) The formation of holocene marsh foraminiferal assemblages, middle Atlantic coast, USA: implications for the holocene sea-level change. J Foraminifer Res 30(4):272–293

    Article  Google Scholar 

  • Hormaza JM (1998) Gentes de Plasentia de Butrón-Plencia, In: Ayuntamiento de Plentzia, Fundación de Bilbao Bizkaia Kutxa (eds), Plasentia de Butrón-Plencia-Plentzia. Apuntes II, pp. 99–117

    Google Scholar 

  • Horton BP (1999) The distribution of contemporary intertidal foraminifera at Cowpen Marsh, Tees Estuary, UK: implications for studies of holocene sea-level changes. Palaeogeogr Palaeoclimatol Palaeoecol 149(1–4):127–149

    Article  Google Scholar 

  • Irabien MJ, Velasco F (1999) Heavy metals in Oka river sediments (Urdaibai National Biosphere Reserve, Northern Spain): lithogenic and anthropogenic effects. Environ Geol 37(1):54–63

    Article  Google Scholar 

  • Irabien MJ, Cearreta A, Leorri E, Gómez J, Viguri J (2008a) A 130 year record of pollution in the Suances estuary (Southern Bay of Biscay): implications for environmental management. Mar Pollut Bull 56(10):1719–1727

    Article  Google Scholar 

  • Irabien MJ, Rada M, Gómez J, Soto J, Mañanes A, Viguri J (2008b) An assessment of anthropogenic impact in a nature reserve: the Santoña Marshes (Northern Spain). J Iber Geol 34(2):235–242

    Google Scholar 

  • Irabien MJ, Cearreta A, Urteaga M (2012) Historical signature of Roman mining activities in the Bidasoa estuary (Basque Country, Northern Spain): an integrated micropalaeontological, geochemical and archaeological approach. J Archaeol Sci 39(7):2361–2370

    Article  Google Scholar 

  • Irabien MJ, García-Artola A, Cearreta A, Leorri E (2015) Chemostratigraphic and lithostratigraphic signatures of the anthropocene in estuarine areas from the eastern Cantabrian coast (N. Spain). Quat Int 364:196–205

    Article  Google Scholar 

  • Kirwan ML, Blum LK (2011) Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences 8(4):987–993

    Article  Google Scholar 

  • Landajo A, Arana G, de Diego A, Etxebarria N, Zuloaga O, Amouroux D (2004) Analysis of heavy metal distribution in superficial estuarine sediments (estuary of Bilbao, Basque Country) by open-focused microwave-assisted extraction and ICP-OES. Chemosphere 56(11):1033–1041

    Article  Google Scholar 

  • Leorri E, Cearreta A (2004) Holocene environmental development of the Bilbao estuary, Northern Spain: sequence stratigraphy and foraminiferal interpretation. Mar Micropaleontol 51(1–2):75–94

    Article  Google Scholar 

  • Leorri E, Horton BP, Cearreta A (2008) Development of a foraminifera-based transfer function in the Basque marshes, N. Spain: implications for sea-level studies in the bay of Biscay. Mar Geol 251(1):60–74

    Article  Google Scholar 

  • Leorri E, Cearreta A, Milne G (2012) Field observations and modelling of holocene sea-level changes in the southern bay of Biscay: implication for understanding current rates of relative sea-level change and vertical land motion along the Atlantic coast of SW Europe. Quat Sci Rev 42:59–73

    Article  Google Scholar 

  • Leorri E, Cearreta A, García-Artola A, Irabien MJ, Blake WH (2013) Relative sea-level rise in the Basque coast (N Spain): different environmental consequences on the coastal area. Ocean Coast Manag 77:3–13

    Article  Google Scholar 

  • Leorri E, Cearreta A, Irabien MJ, García-Artola A, Corbett DR, Horsman E, Blake WH, Sanchez-Cabeza J-A (2014a) Anthropogenic disruptions of the sedimentary record in coastal marshes: examples from the southern Bay of Biscay (N. Spain). Cont Shelf Res 86:132–140

    Article  Google Scholar 

  • Leorri E, Mitra S, Irabien MJ, Zimmerman AR, Blake WH, Cearreta A (2014b) A 700 year record of combustion-derived pollution in Northern Spain: tools to identify the holocene/anthropocene transition in coastal environments. Sci Total Environ 470–471:240–247

    Article  Google Scholar 

  • Lowe JJ, Walker MJC (1997) Reconstructing quaternary environments (2nd edition). Longman, London

    Google Scholar 

  • Marshall W (2015) Chronohorizons: indirect and unique event dating methods for sea-level reconstructions. In: Shennan I, Long AJ, Horton BP (eds) Handbook of sea-level research. Wiley, Oxford, pp 373–385

    Google Scholar 

  • Martínez Cedrún P (1984) Dinámica y sedimentación en el estuario de Asón (Cantabria). Trab Geol Univ de Oviedo 14:175–197

    Google Scholar 

  • Mil-Homens M, Stevens RL, Boer W, Abrantes F, Cato I (2006) Pollution history of heavy metals on the Portuguese shelf using 210Pb-geochronology. Sci Total Environ 367(1):466–480

    Article  Google Scholar 

  • Monge-Ganuzas M, Cearreta A, Iriarte E (2008) Consequences of estuarine sand dredging and dumping on the Urdaibai reserve of the biosphere (Bay of Biscay): the case of the “Mundaka left wave”. J Iber Geol 34(2):215–234

    Google Scholar 

  • Monge-Ganuzas M, Cearreta A, Evans G, Leorri E, Irabien MJ, García-Artola A, Iriarte E (2011) Dinámica sedimentaria actual en el estuario del Oka. In: Onaindia M, Ibabe A, Unzueta J (eds) Guía científica de Urdaibai, Cátedra UNESCO sobre Desarrollo Sostenible y Educación Ambiental de la UPV/EHU, pp 407–427

    Google Scholar 

  • Mudd SM, D’Alpaos A, Morris JT (2010) How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J Geophys Res Earth 115(F3):F03029

    Google Scholar 

  • Murray JW (1979) British nearshore foraminiferids. Synopses of the British Fauna (New Series), vol 16. Synopsis of the British Fauna (New Series). Academic Press, London

    Google Scholar 

  • Murray JW, Alve E (2011) The distribution of agglutinated foraminifera in NW European seas: baseline data for the interpretation of fossil assemblages. Palaeontol Electron 14(2):1–42

    Google Scholar 

  • Olendrzyński K, Anderberg S, Stigliani W, Bartnicki J, Pacyna J (1996) Atmospheric emissions and depositions of cadmium, lead, and zinc in Europe during the period 1955–1987. Environ Rev 4(4):300–320

    Article  Google Scholar 

  • Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D, Nitter S, Pregger T, Pfeiffer H, Friedrich R (2007) Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmos Environ 41(38):8557–8566

    Article  Google Scholar 

  • Patterson RT, Guilbault J-P, Clague JJ (1999) Taphonomy of tidal marsh foraminifera: implications of surface sample thickness for high-resolution sea-level studies. Palaeogeogr Palaeoclimatol Palaeoecol 149(1–4):199–211

    Article  Google Scholar 

  • Ritchie JC, McHenry JR (1990) Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19(2):215–233

    Article  Google Scholar 

  • Rivas V, Cendrero A (1991) Use of natural and artificial accretion on the north coast of Spain: historical trends and assessment of some environmental and economic consequences. J Coast Res 7(2):491–507

    Google Scholar 

  • Roman CT, Burdick DM (2012) Tidal marsh restoration: a synthesis of science and management. Island Press, Washington

    Book  Google Scholar 

  • Sanchez-Cabeza J-A, Masqué P, Ani-Ragolta I (1998) 210Pb and 210Po analysis in sediments and soils by microwave acid digestion. J Radioanal Nucl Chem 227(1):19–22

    Article  Google Scholar 

  • Sanchez-Cabeza J-A, Ruiz-Fernández AC (2012) 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta 82:183–200

    Article  Google Scholar 

  • Santín C, de la Rosa JM, Knicker H, Otero XL, Álvarez MÁ, González-Vila FJ (2009) Effects of reclamation and regeneration processes on organic matter from estuarine soils and sediments. Org Geochem 40(9):931–941

    Article  Google Scholar 

  • Sarkar SK, Bilinski SF, Bhattacharya A, Saha M, Bilinski H (2004) Levels of elements in the surficial estuarine sediments of the Hugli River, Northeast India and their environmental implications. Environ Int 30(8):1089–1098

    Article  Google Scholar 

  • Schropp SJ, Lewis FG, Windom HL, Ryan JD, Calder FD, Burney LC (1990) Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries 13(3):227–235

    Article  Google Scholar 

  • Shepard CC, Crain CM, Beck MW (2011) The protective role of coastal marshes: a systematic review and meta-analysis. PLoS One 6(11):e27374

    Article  Google Scholar 

  • Temmerman S, Govers G, Wartel S, Meire P (2004) Modelling estuarine variations in tidal marsh sedimentation: response to changing sea level and suspended sediment concentrations. Mar Geol 212(1–4):1–19

    Article  Google Scholar 

  • van Wijnen HJ, Bakker JP (2001) Long-term surface elevation change in salt marshes: a prediction of marsh response to future sea-level rise. Estuar Coast Shelf Sci 52(3):381–390

    Article  Google Scholar 

  • Villate F, Valencia V, Urrutia J (1990) Estudio hidrográfico, sedimentológico y de metales pesados en las rías del Bidasoa y Plencia. Informes Técnicos del Departamento de Agricultura y Pesca del Gobierno Vasco 32:1–100

    Google Scholar 

  • Weis JS, Butler CA (2009) Salt marshes: a natural and unnatural history. Rutgers University Press, Piscataway

    Google Scholar 

  • Weiss D, Shotyk W, Kempf O (1999) Archives of atmospheric lead pollution. Naturwissenschaften 86(6):262–275

    Article  Google Scholar 

  • Zapata L (2005) Agricultura prehistórica en el País Vasco litoral. Munibe (Antropol-Arkeologia) 57:553–561

    Google Scholar 

Microfaunal Reference List

  • Ammonia tepida (Cushman) = Rotalia beccarii (Linné) var. tepida Cushman, 1926

    Google Scholar 

  • Arenoparrella mexicana (Kornfeld) = Trochammina inflata (Montagu) var. mexicana Kornfeld, 1931

    Google Scholar 

  • Elphidium oceanense (d’Orbigny) = Polystomella oceanensis d’Orbigny, 1826

    Google Scholar 

  • Elphidium williamsoni Haynes, 1973

    Google Scholar 

  • Entzia macrescens (Brady) = Trochammina inflata (Montagu) var. macrescens Brady, 1870

    Google Scholar 

  • Haplophragmoides wilberti Andersen, 1953

    Google Scholar 

  • Haynesina germanica (Ehrenberg) = Nonium germanicum Ehrenberg, 1840

    Google Scholar 

  • Lobatula lobatula (Walker and Jacob) = Nautilus lobatulus Walker and Jacob, 1798

    Google Scholar 

  • Miliammina fusca (Brady) = Quinqueloculina fusca Brady, 1870

    Google Scholar 

  • Scherochorella moniliformis (Siddall) = Reophax moniliforme Siddall, 1886

    Google Scholar 

  • Trochammina inflata (Montagu) = Nautilus inflatus Montagu, 1808

    Google Scholar 

Download references

Acknowledgements

This research was funded by the ANTROPICOSTA-Anthropocene sedimentary record in the Cantabrian coastal environments (MINECO, CGL2013-41083-P), Formation and Research Unit in Quaternary: Environmental Changes and Human Fingerprint (UPV/EHU, UFI11/09) and HAREA-Coastal Geology Research Group (EJ/GV, IT976-16) projects. It is contribution 38 of the Geo-Q Zentroa Research Unit (Joaquín Gómez de Llarena Laboratory). This chapter represents a synthesis of Ane García-Artola’s doctoral research funded by the Basque Government (BFI08.180) and numerous papers published by the authors on this geographical area over the last decade. Illustrations are original or modified from previously published versions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ane García-Artola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

García-Artola, A., Cearreta, A., Irabien, M.J. (2017). Recent Agricultural Occupation and Environmental Regeneration of Salt Marshes in Northern Spain. In: Finkl, C., Makowski, C. (eds) Coastal Wetlands: Alteration and Remediation. Coastal Research Library, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-56179-0_2

Download citation

Publish with us

Policies and ethics