Skip to main content

Transformations

  • Chapter
  • First Online:
Ramanujan's Theta Functions
  • 1334 Accesses

Abstract

Suppose ω 1 and ω 2 are complex numbers that satisfy Im(ω 2ω 1) > 0, and let

$$\varLambda (\omega _{1},\omega _{2}) = \left \{m\omega _{1} + n\omega _{2}: m,n \in \mathbb{Z}\right \}.$$

We show how properties of Λ(ω 1, ω 2) and certain of its subsets imply transformation formulas for elliptic functions and modular forms. All positive weights can be handled in the same way, and the conditionally convergent cases of weights one and two present no extra difficulty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The function Z(τ, ) being defined in (2.30) is completely different from the function Z(θ, ω 1, ω 2) in (2.7). They can be distinguished from each other because one is a function of two variables whereas the other is a function of three variables. No confusion will arise, because the functions occur in different contexts and do not normally appear together.

References

  1. M. Aigner, G. Ziegler, Proofs from the Book, 2nd edn. (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  2. T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory, 2nd edn. (Springer, New York, 1990)

    Book  MATH  Google Scholar 

  3. H.H. Chan, T.G. Chua, An alternative transformation formula for the Dedekind η-function via the Chinese Remainder Theorem. Int. J. Number Theory 12, 513–526 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Cooper, Construction of Eisenstein series for Γ 0(p). Int. J. Number Theory 5, 765–778 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. D.A. Cox, Primes of the Form x 2 + ny 2 (Wiley, New York, 1989)

    Google Scholar 

  6. W.F. Eberlein, On Euler’s infinite product for the sine. J. Math. Anal. Appl. 58, 147–151 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. O. Kolberg, Note on the Eisenstein series of Γ 0(p), Årbok for Universitetet i Bergen. Matematisk-Naturvidenskapelig Serie, no. 6, 20 pp. Printed October 1968

    Google Scholar 

  8. E. Landau, Elementary Number Theory (AMS Chelsea, Providence, RI, 1999)

    MATH  Google Scholar 

  9. T. Miyake, Modular Forms (Springer, Berlin, 2006)

    MATH  Google Scholar 

  10. B. Schoeneberg, Elliptic Modular Functions: An Introduction (Springer, New York-Heidelberg, 1974)

    Book  MATH  Google Scholar 

  11. J.-P. Serre, A course in Arithmetic (Springer, New York, 1973)

    Book  MATH  Google Scholar 

  12. K. Venkatachaliengar, Elementary proofs of the infinite product formula for sinz and allied formulae. Am. Math. Mon. 69, 541–545 (1962)

    Article  MATH  Google Scholar 

  13. D. Zagier, Integral solutions of Apéry-like recurrence equations, in Groups and Symmetries. CRM Proceedings of Lecture Notes, vol. 47 (American Mathematical Society, Providence, RI, 2009), pp. 349–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cooper, S. (2017). Transformations. In: Ramanujan's Theta Functions. Springer, Cham. https://doi.org/10.1007/978-3-319-56172-1_3

Download citation

Publish with us

Policies and ethics