Skip to main content

Metabotropic Glutamate Receptor Function in Thalamocortical Circuitry

  • Chapter
  • First Online:
mGLU Receptors

Part of the book series: The Receptors ((REC,volume 31))

Abstract

The thalamo-corticothalamic network underpins sensory, motor and cognitive processing. All three of the mGlu receptor groups are represented in these pathways. Of the Group I receptors, it seems clear that mGlu1 receptors are located postsynaptically to corticothalamic terminals on dendrites of thalamic relay cells and may function to modulate relay cell transmission under various conditions. Group III mGlu receptors (mGlu4, mGlu7, mGlu8) may also modulate this synapse via a presynaptic mechanism. GABAergic inhibitory processes can be modulated via activation of either Group II (mGlu2 and mGlu3) receptors or Group III receptors, acting either on GABAergic terminals or on thalamic cell bodies, including those in the thalamic reticular nucleus (TRN). There is also evidence that mGlu receptors can modulate astrocyte function in the thalamus. The heterogeneous expression of mGlu receptors at specific sites within the thalamus makes them potential therapeutic targets for a variety of conditions including pain, epilepsy and cognitive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander GM, Godwin DW (2005) Presynaptic inhibition of corticothalamic feedback by metabotropic glutamate receptors. J Neurophysiol 94:163–175

    Google Scholar 

  • Alexander GM, Godwin DW (2006) Unique presynaptic and postsynaptic roles of Group II metabotropic glutamate receptors in the modulation of thalamic network activity. Neuroscience 141:501–513

    Google Scholar 

  • Bertaso F et al (2008) PICK1 uncoupling from mGluR7a causes absence-like seizures. Nat Neurosci 11:940–948

    Google Scholar 

  • Blumenfeld H (2005) Cellular and network mechanisms of spike-wave seizures. Epilepsia 46(Suppl 9):21–33

    Article  CAS  PubMed  Google Scholar 

  • Bradley SR et al (1998) Distribution and developmental regulation of metabotropic glutamate receptor 7a in rat brain. J Neurochem 71:636–645

    Google Scholar 

  • Bradley SR et al (1999) Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia. J Comp Neurol 407:33–46

    Google Scholar 

  • Cherlyn SY et al (2010) Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev 34:958–977

    Google Scholar 

  • Copeland CS, Neale SA, Salt TE (2012) Positive allosteric modulation reveals a specific role for mGlu2 receptors in sensory processing in the thalamus. J Physiol 590:937–951

    Google Scholar 

  • Copeland CS, Neale SA, Salt TE (2015) Neuronal activity patterns in the mediodorsal thalamus and related cognitive circuits are modulated by metabotropic glutamate receptors. Neuropharmacology 92:16–24

    Google Scholar 

  • Corti C et al (1998) Cloning and characterization of alternative mRNA forms for the rat metabotropic glutamate receptors mGluR7 and mGluR8. Eur J Neurosci 10:3629–3641

    Google Scholar 

  • Corti C et al (2002) Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 110:403–420

    Google Scholar 

  • Cox CL, Sherman SM (1999) Glutamate inhibits thalamic reticular neurons. J Neurosci 19:6694–6699

    CAS  PubMed  Google Scholar 

  • Crabtree JW (1999) Intrathalamic sensory connections mediated by the thalamic reticular nucleus. Cell Mol Life Sci 56:683–700

    Google Scholar 

  • Crabtree JW et al (2013) GABAA, NMDA and mGlu2 receptors tonically regulate inhibition and excitation in the thalamic reticular nucleus. Eur J Neurosci 37:850–859

    Google Scholar 

  • Errington AC et al (2011) mGluR control of interneuron output regulates feedforward tonic gabaa inhibition in the visual thalamus. J Neurosci 31:8669–8680

    Google Scholar 

  • Ghose S et al (2009) Differential expression of metabotropic glutamate receptors 2 and 3 in schizophrenia: a mechanism for antipsychotic drug action? Am J Psychiatr 166:812–820

    Google Scholar 

  • Godwin DW et al (1996) Ultrastructural localization suggests that retinal and cortical inputs access different metabotropic glutamate receptors in the lateral geniculate nucleus. J Neurosci 16:8181–8192

    CAS  PubMed  Google Scholar 

  • Goudet C et al (2008) Group III metabotropic glutamate receptors inhibit hyperalgesia in animal models of inflammation and neuropathic pain. Pain 137:112–124

    Google Scholar 

  • Govindaiah G et al (2012a) Activity-dependent regulation of retinogeniculate signaling by metabotropic glutamate receptors. J Neurosci 32:12820–12831

    Google Scholar 

  • Govindaiah G et al (2012b) Spatially distinct actions of metabotropic glutamate receptor activation in dorsal lateral geniculate nucleus. J Neurophysiol 107:1157–1163

    Google Scholar 

  • Guillery RW, Sherman SM (2002) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33:163–175

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ et al (2008) Review: the group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): expression, function and involvement in schizophrenia. J Psychopharmacol 22:308–322

    Google Scholar 

  • Hughes SW et al (2002) Cellular mechanisms of the slow (< 1 Hz) oscillation in thalamocortical neurons in vitro. Neuron 33:947–958

    Google Scholar 

  • Izzi C et al (2003) Candidate gene analysis of the human metabotropic glutamate receptor type 4 (GRM4) in patients with juvenile myoclonic epilepsy. Am J Med Genet B Neuropsychiatr Genet 123B:59–63

    Google Scholar 

  • Jones EG (1985) The thalamus. Plenum Press, New York

    Book  Google Scholar 

  • Kinoshita A et al (1998) Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: a light and electron microscopic study. J Comp Neurol 393:332–352

    Google Scholar 

  • Kullmann DM (2000) Spillover and synaptic cross talk mediated by glutamate and GABA in the mammalian brain. Prog Brain Res 125:339–351

    Article  CAS  PubMed  Google Scholar 

  • Kyuyoung CL, Huguenard JR (2014) Modulation of short-term plasticity in the corticothalamic circuit by group III metabotropic glutamate receptors. J Neurosci 34:675–687

    Google Scholar 

  • Lesage ASJ (2004) Role of Group I metabotropic glutamate receptors mGlu1 and mGlu5 in nociceptive signalling. Curr Neuropharmacol 2:363–393

    Article  CAS  Google Scholar 

  • Liu XB, Munoz A, Jones EG (1998) Changes in subcellular localization of metabotropic glutamate receptor subtypes during postnatal development of mouse thalamus. J Comp Neurol 395:450–465

    Article  CAS  PubMed  Google Scholar 

  • Martin LJ et al (1992) Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9:259–270

    Article  CAS  PubMed  Google Scholar 

  • Mineff E, Valtschanoff J (1999) Metabotropic glutamate receptors 2 and 3 expressed by astrocytes in rat ventrobasal thalamus. Neurosci Lett 270:95–98

    Google Scholar 

  • Mitchell AS et al (2014) Advances in understanding mechanisms of thalamic relays in cognition and behavior. J Neurosci 34:15340–15346

    Google Scholar 

  • Mounce J et al (2014) Association of GRM3 polymorphism with white matter integrity in schizophrenia. Schizophr Res 155:8–14

    Google Scholar 

  • Neki A et al (1996) Pre- and postsynaptic localization of a metabotropic glutamate receptor, mGluR2, in the rat brain: an immunohistochemical study with a monoclonal antibody. Neurosci Lett 202:197–200

    Google Scholar 

  • Neto FL et al (2000a) Differential distribution of metabotropic glutamate receptor subtype mRNAs in the thalamus of the rat. Brain Res 854:93–105

    Article  Google Scholar 

  • Neto FL et al (2000b) Expression of metabotropic glutamate receptors mRNA in the thalamus and brainstem of monoarthritic rats. Mol Brain Res 81:140–154

    Article  Google Scholar 

  • Ngomba RT et al (2008) Positive allosteric modulation of metabotropic glutamate 4 (mGlu4) receptors enhances spontaneous and evoked absence seizures. Neuropharmacology 54:344–354

    Google Scholar 

  • Ngomba RT et al (2011) Metabotropic glutamate receptors in the thalamocortical network: strategic targets for the treatment of absence epilepsy. Epilepsia 53:1211–1222

    Article  Google Scholar 

  • Nicoletti F et al (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60:1017–1041

    Article  CAS  PubMed  Google Scholar 

  • Ohishi H et al (1993a) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J Comp Neurol 335:252–266

    Article  CAS  PubMed  Google Scholar 

  • Ohishi H et al (1993b) Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience 53:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Ohishi H et al (1995) Distributions of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. J Comp Neurol 360:555–570

    Article  CAS  PubMed  Google Scholar 

  • Parnaudeau S et al (2013) Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77:1151–1162

    Google Scholar 

  • Parri HR, Gould TM, Crunelli V (2010) Sensory and cortical activation of distinct glial cell subtypes in the somatosensory thalamus of young rats. Eur J Neurosci 32:29–40

    Google Scholar 

  • Pinault D, Deschenes M (1998a) Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. Eur J Neurosci 10:3462–3469

    Google Scholar 

  • Pinault D, Deschenes M (1998b) Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. J Comp Neurol 391:180–203

    Google Scholar 

  • Reichova I, Sherman SM (2004) Somatosensory corticothalamic projections: distinguishing drivers from modulators. J Neurophysiol 92:2185–2197

    Article  PubMed  Google Scholar 

  • Salt TE (1989) Gamma-aminobutyric acid and afferent inhibition in the cat and rat ventrobasal thalamus. Neuroscience 28:17–26

    Article  CAS  PubMed  Google Scholar 

  • Salt TE, Binns KE (2000) Contributions of mGlu1 and mGlu5 receptors to interactions with N-methyl-D-aspartate receptor-mediated responses and nociceptive sensory responses of rat thalamic neurones. Neuroscience 100:375–380

    Article  CAS  PubMed  Google Scholar 

  • Salt TE, Eaton SA (1995) Distinct presynaptic metabotropic receptors for L-AP4 and CCG1 on GABAergic terminals: pharmacological evidence using novel a-methyl derivative mGluR antagonists, MAP4 and MCCG, in the rat thalamus in vivo. Neuroscience 65:5–13

    Article  CAS  PubMed  Google Scholar 

  • Salt TE, Eaton SA (1996) Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus. Prog Neurobiol 48:55–72

    Article  CAS  PubMed  Google Scholar 

  • Salt TE, Turner JP (1998) Modulation of sensory inhibition in the ventrobasal thalamus via activation of Group II metabotropic glutamate receptors (mGluRs) by (2R,4R)-APDC. Exp Brain Res 121:181–185

    Article  CAS  PubMed  Google Scholar 

  • Salt TE et al (2012) Potentiation of sensory responses in ventrobasal thalamus in vivo via selective modulation of mGlu1 receptors with a positive allosteric modulator. Neuropharmacology 62:1695–1699

    Google Scholar 

  • Salt TE et al (2014) Function of mGlu1 receptors in the modulation of nociceptive processing in the thalamus. Neuropharmacology 79:405–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saugstad JA et al (1997) Cloning and expression of rat metabotropic glutamate receptor 8 reveals a distinct pharmacological profile. Mol Pharmacol 51:119–125

    CAS  PubMed  Google Scholar 

  • Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17:417–422

    Google Scholar 

  • Sherman SM, Guillery RW (2011) Distinct functions for direct and transthalamic corticocortical connections. J Neurophysiol 106:1068–1077

    Google Scholar 

  • Shosaku A et al (1989) Analysis of recurrent inhibitory circuit in rat thalamus: neurophysiology of the thalamic reticular nucleus. Prog Neurobiol 32:77–102

    Article  CAS  PubMed  Google Scholar 

  • Snead OC et al (2000) Modulation of absence seizures by the GABA(A) receptor: a critical role for metabotropic glutamate receptor 4 (mGluR4). J Neurosci 20:6218–6224

    Google Scholar 

  • Tamaru Y et al (2001) Distribution of metabotropic glutamate receptor mglur3 in the mouse cns: differential location relative to pre- and postsynaptic sites. Neuroscience 106:481–503

    Google Scholar 

  • Turner JP, Salt TE (1999) Group III metabotropic glutamate receptors control corticothalamic synaptic transmission in the rat thalamus in vitro. J Physiol 519:481–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JP, Salt TE (2000) Synaptic activation of the Group I metabotropic glutamate receptor mGlu1 on the thalamocortical neurones of the rat dorsal lateral geniculate nucleus in vitro. Neuroscience 100:493–505

    Article  CAS  PubMed  Google Scholar 

  • Turner JP, Salt TE (2003) Group II and III metabotropic glutamate receptors and the control of the TRN input to rat thalamocortical neurones in vitro. Neuroscience 122:459–469

    Article  CAS  PubMed  Google Scholar 

  • Vidnyanszky Z et al (1996) Immunohistochemical visualization of the mGluR1a metabotropic glutamate receptor at synapses of corticothalamic terminals originating from area 17 of the rat. Eur J Neurosci 8:1061–1071

    Article  CAS  PubMed  Google Scholar 

  • Wong CG-T et al (2001) Localization of the human mGluR4 gene within an epilepsy susceptibility locus1. Mol Brain Res 87:109–116

    Google Scholar 

  • Zikopoulos B, Barbas H (2007) Parallel driving and modulatory pathways link the prefrontal cortex and thalamus. PLoS One 2:e848

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Salt MA, PhD, FBPhS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Salt, T.E., Copeland, C.S. (2017). Metabotropic Glutamate Receptor Function in Thalamocortical Circuitry. In: Ngomba, R., Di Giovanni, G., Battaglia, G., Nicoletti, F. (eds) mGLU Receptors. The Receptors, vol 31. Humana Press, Cham. https://doi.org/10.1007/978-3-319-56170-7_8

Download citation

Publish with us

Policies and ethics