Skip to main content

Structure, Dynamics, and Modulation of Metabotropic Glutamate Receptors

  • Chapter
  • First Online:
mGLU Receptors

Part of the book series: The Receptors ((REC,volume 31))

Abstract

The metabotropic glutamate receptors (mGluRs) are glutamate-activated G-protein-coupled receptors that are expressed throughout the central nervous system. The eight mGluR subtypes serve to modulate transmission at many synapses and are potential therapeutic targets for the treatment of many neurological and psychiatric diseases. In particular, their organization in multiple domains and subunits offers various possibilities for the development of new drugs that modulate mGluR activity. This review will show how recent and original approaches to study the mGluR structure, dynamics, and pharmacology have brought a new view of their mechanism of activation and the possibility of developing innovative ligands, such as light-regulated drugs, to control the physiological activity of mGluRs in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballesteros J, Weinstein H (1995) Integrated methods for the construction of three-dimensional models of structure-function relations in G protein–coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  • Bessis A-S et al (2002) Closure of the Venus Flytrap module of mGlu8 receptor and the activation process: insights from mutations converting antagonists into agonists. Proc Natl Acad Sci U S A 99:11097–11102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broichhagen J et al (2015) Orthogonal optical control of a G protein-coupled receptor with a SNAP-tethered photochromic ligand. ACS Cent Sci 1:383–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calebiro D et al (2013) Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A 110:743–748

    Article  CAS  PubMed  Google Scholar 

  • Carroll EC et al (2015) Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc Natl Acad Sci U S A 112:E776–E785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherezov V et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christopher JA et al (2015) Fragment and structure-based drug discovery for a class C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 58:6653–6664

    Article  CAS  PubMed  Google Scholar 

  • Christopoulos A et al (2014) International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol Rev 66:918–947

    Article  CAS  PubMed  Google Scholar 

  • Comps-Agrar L et al (2011) The oligomeric state sets GABA(B) receptor signalling efficacy. EMBO J 30:2336–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comps-Agrar L, Kniazeff J, Brock C, Trinquet E, Pin JP (2012) Stability of GABAB receptor oligomers revealed by dual TR-FRET and drug-induced cell surface targeting. FASEB J 26:3430–3439

    Article  CAS  PubMed  Google Scholar 

  • Conn P, Pin J-P (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  CAS  PubMed  Google Scholar 

  • Conn PJ, Christopoulos A, Lindsley CW (2009) Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 8:41–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doré AS et al (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511:557–562

    Article  PubMed  Google Scholar 

  • Doumazane E et al (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 25:66–77

    Article  CAS  PubMed  Google Scholar 

  • Doumazane E et al (2013) Illuminating the activation mechanisms and allosteric properties of metabotropic glutamate receptors. Proc Natl Acad Sci U S A 110:E1416–E1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Moustaine D et al (2012) Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc Natl Acad Sci U S A 109:16342–16347

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504

    Article  CAS  PubMed  Google Scholar 

  • Ferraguti F et al (2005) Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus. J Neurosci 25:10520–10536

    Article  CAS  PubMed  Google Scholar 

  • Geng Y, Bush M, Mosyak L, Wang F, Fan QR (2013) Structural mechanism of ligand activation in human GABA(B) receptor. Nature 504:254–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng Y et al (2016) Structural mechanism of ligand activation in human calcium-sensing receptor. eLife 5:e13662

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Santacana X et al (2014) A double effect molecular switch leads to a novel potent negative allosteric modulator of metabotropic glutamate receptor 5. Med Chem Commun 5:1548–1554

    Article  CAS  Google Scholar 

  • Goudet C et al (2012) A novel selective metabotropic glutamate receptor 4 agonist reveals new possibilities for developing subtype selective ligands with therapeutic potential. FASEB J 26:1682–1693

    Article  CAS  PubMed  Google Scholar 

  • Gregory KJ, Noetzel MJ, Niswender CM (2013) Pharmacology of metabotropic glutamate receptor allosteric modulators: structural basis and therapeutic potential for CNS disorders. Prog Mol Biol Transl Sci 115:61–121

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Shi L, Filizola M, Weinstein H, Javitch JA (2005) Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc Natl Acad Sci U S A 102:17495–17500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hlavackova V et al (2005) Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. EMBO J 24:499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hlavackova V et al (2012) Sequential inter- and intrasubunit rearrangements during activation of dimeric metabotropic glutamate receptor 1. Sci Signal 5:ra59

    Article  PubMed  Google Scholar 

  • Huang S et al (2011) Interdomain movements in metabotropic glutamate receptor activation. Proc Natl Acad Sci U S A 108:15480–15485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquemont S et al (2011) Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med 3:64ra1

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y et al (2010) Elucidation of a novel extracellular calcium-binding site on metabotropic glutamate receptor 1{alpha} (mGluR1{alpha}) that controls receptor activation. J Biol Chem 285:33463–33474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katritch V et al (2014) Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 39:233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyonaka S et al (2016) Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells. Nat Chem 8:958–967

    Article  CAS  PubMed  Google Scholar 

  • Kniazeff J et al (2004a) Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Struct Mol Biol 11:706–713

    Article  CAS  PubMed  Google Scholar 

  • Kniazeff J et al (2004b) Locking the dimeric GABA(B) G-protein-coupled receptor in its active state. J Neurosci 24:370–377

    Article  CAS  PubMed  Google Scholar 

  • Kniazeff J, Prezeau L, Rondard P, Pin JP, Goudet C (2011) Dimers and beyond: the functional puzzles of class C GPCRs. Pharmacol Ther 130:9–25

    Article  CAS  PubMed  Google Scholar 

  • Kunishima N et al (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407:971–977

    Article  CAS  PubMed  Google Scholar 

  • Levitz J et al (2013) Optical control of metabotropic glutamate receptors. Nat Neurosci 16:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitz J et al (2016) Mechanism of assembly and cooperativity of homomeric and heteromeric metabotropic glutamate receptors. Neuron 92(1):143–159

    Article  CAS  PubMed  Google Scholar 

  • Lindsley CW et al (2016) Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors. Chem Rev 116:6707–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manglik A et al (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485:321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcaggi P, Mutoh H, Dimitrov D, Beato M, Knopfel T (2009) Optical measurement of mGluR1 conformational changes reveals fast activation, slow deactivation, and sensitization. Proc Natl Acad Sci U S A 106:11388–11393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel D et al (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monn JA et al (2015) Synthesis and pharmacological characterization of C4-disubstituted analogs of 1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate: identification of a potent, selective metabotropic glutamate receptor agonist and determination of agonist-bound human mGlu2 and mGlu3 amino terminal domain structures. J Med Chem 58:1776–1794

    Article  CAS  PubMed  Google Scholar 

  • Muto T, Tsuchiya D, Morikawa K, Jingami H (2007) Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci U S A 104:3759–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordstrom KJ, Sallman Almen M, Edstam MM, Fredriksson R, Schioth HB (2011) Independent HHsearch, Needleman–Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol Biol Evol 28:2471–2480

    Article  PubMed  Google Scholar 

  • Olofsson L et al (2014) Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy. Nat Commun 5:5206

    Article  CAS  PubMed  Google Scholar 

  • Parmentier M-L, Prézeau L, Bockaert J, Pin J-P (2002) A model for the functioning of family 3 GPCRs. Trends Pharmacol Sci 23:268–274

    Article  CAS  PubMed  Google Scholar 

  • Patil ST et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Pin J-P, Galvez T, Prézeau L (2003) Evolution, structure and activation mechanism of family 3/C G-protein coupled receptors. Pharmacol Ther 98:325–354

    Article  CAS  PubMed  Google Scholar 

  • Pittolo S et al (2014) An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat Chem Biol 10:813–815

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SG et al (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiner A, Levitz J, Isacoff EY (2015) Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. Curr Opin Pharmacol 20:135–143

    Article  CAS  PubMed  Google Scholar 

  • Rondard P, Pin JP (2015) Dynamics and modulation of metabotropic glutamate receptors. Curr Opin Pharmacol 20:95–101

    Article  CAS  PubMed  Google Scholar 

  • Rondard P et al (2006) Coupling of agonist binding to effector domain activation in metabotropic glutamate-like receptors. J Biol Chem 281:24653–24661

    Article  CAS  PubMed  Google Scholar 

  • Rondard P, Goudet C, Kniazeff J, Pin JP, Prézeau L (2011) The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein-coupled receptors. Neuropharmacology 60:82–92

    Article  CAS  PubMed  Google Scholar 

  • Rook JM et al (2012) Unique signaling profiles of positive allosteric modulators of metabotropic glutamate receptor subtype 5 determine differences in in vivo activity. Biol Psychiatry 73(6):501–509

    Article  PubMed  PubMed Central  Google Scholar 

  • Rook JM et al (2015) Biased mGlu5-positive allosteric modulators provide in vivo efficacy without potentiating mGlu5 modulation of NMDAR currents. Neuron 86:1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rovira X et al (2015) Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors. FASEB J 29:116–130

    Article  CAS  PubMed  Google Scholar 

  • Rovira X et al (2016) OptoGluNAM4.1, a photoswitchable allosteric antagonist for real-time control of mGlu4 receptor activity. Cell Chem Biol 23:929–934

    Article  CAS  PubMed  Google Scholar 

  • Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF (2004) Electron crystallography reveals the structure of metarhodopsin I. EMBO J 23:3609–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwenk J et al (2010) Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature 465:231–235

    Article  CAS  PubMed  Google Scholar 

  • Sheffler DJ, Gregory KJ, Rook JM, Conn PJ (2011) Allosteric modulation of metabotropic glutamate receptors. Adv Pharmacol 62:37–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tateyama M, Kubo Y (2006) Dual signaling is differentially activated by different active states of the metabotropic glutamate receptor 1alpha. Proc Natl Acad Sci U S A 103:1124–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tora AS et al (2015) Allosteric modulation of metabotropic glutamate receptors by chloride ions. FASEB J 29:4174–4188

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya D, Kunishima N, Kamiya N, Jingami H, Morikawa K (2002) Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc Natl Acad Sci U S A 99:2660–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullmer C et al (2012) Functional monoclonal antibody acts as a biased agonist by inducing internalization of metabotropic glutamate receptor 7. Br J Pharmacol 167:1448–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urban JD et al (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13

    Article  CAS  PubMed  Google Scholar 

  • Vafabakhsh R, Levitz J, Isacoff EY (2015) Conformational dynamics of a class C G-protein-coupled receptor. Nature 524:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatakrishnan AJ et al (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    Article  CAS  PubMed  Google Scholar 

  • Wood MR, Hopkins CR, Brogan JT, Conn PJ, Lindsley CW (2011) “Molecular switches” on mGluR allosteric ligands that modulate modes of pharmacology. Biochemistry 50:2403–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H et al (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485:327–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue L et al (2015) Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Nat Chem Biol 11:134–140

    Article  CAS  PubMed  Google Scholar 

  • Yin S et al (2014) Selective actions of novel allosteric modulators reveal functional heteromers of metabotropic glutamate receptors in the CNS. J Neurosci 34:79–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F et al (2008) Molecular mechanism for the umami taste synergism. Proc Natl Acad Sci U S A 105:20930–20934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F et al (2010) Molecular mechanism of the sweet taste enhancers. Proc Natl Acad Sci U S A 107:4752–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C et al (2016) Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist. Sci Adv 2:e1600241

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thanks Dr. Francine Acher for providing the mGlu4 receptor figure with chloride. This work was supported by grants from the Agence Nationale de la Recherche (ANR-09-PIRI-0011, ANR-09-BIOT-018 and ANR-13-BSV5-0007), the FRM (Equipe FRM DEQ20130326522) and Fondation Bettencourt Schueller. X.R. received a financial support from the Beatriu de Pinós program of Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR).

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Rondard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rondard, P., Rovira, X., Goudet, C., Pin, JP. (2017). Structure, Dynamics, and Modulation of Metabotropic Glutamate Receptors. In: Ngomba, R., Di Giovanni, G., Battaglia, G., Nicoletti, F. (eds) mGLU Receptors. The Receptors, vol 31. Humana Press, Cham. https://doi.org/10.1007/978-3-319-56170-7_7

Download citation

Publish with us

Policies and ethics