Skip to main content

Metabotropic Glutamate Receptors and Parkinson’s Disease: Basic and Preclinical Neuroscience

  • Chapter
  • First Online:
mGLU Receptors

Part of the book series: The Receptors ((REC,volume 31))

Abstract

Since the late 1990s, data from various laboratories have provided strong evidence that the three groups of mGlu receptors are widely and specifically expressed in the basal ganglia (BG), where they modulate neuronal excitability as well as synaptic transmission and plasticity. Therefore, targeting specific mGlu receptor subtypes by means of selective drugs could be a possible strategy for restoring normal synaptic function and neuron activity in the BG in Parkinson’s disease (PD). In this context, the spectacular development of subtype-selective mGlu receptor agonists, antagonists, and allosteric modulators has provided scientists with a wide range of neuropharmacological tools that have largely supported this hypothesis. This review provides data showing that drugs acting on mGlu receptors can alleviate PD motor symptoms and reduce levodopa-induced dyskinesia in animal models of PD and recent clinical trials that confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre JA, Kehr J, Yoshitake T, Liu FL, Rivera A, Fernandez-Espinola S, Andbjer B, Leo G, Medhurst AD, Agnati LF, Fuxe K (2005) Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Res 1033:216–220

    Article  CAS  PubMed  Google Scholar 

  • Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458

    Article  CAS  PubMed  Google Scholar 

  • Ambrosi G, Armentero MT, Levandis G, Bramanti P, Nappi G, Blandini F (2010) Effects of early and delayed treatment with an mGluR5 antagonist on motor impairment, nigrostriatal damage and neuroinflammation in a rodent model of Parkinson’s disease. Brain Res Bull 82:29–38

    Article  CAS  PubMed  Google Scholar 

  • Armentero MT, Fancellu R, Nappi G, Bramanti P, Blandini F (2006) Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson’s disease. Neurobiol Dis 22:1–9

    Article  CAS  PubMed  Google Scholar 

  • Amalric M. Targeting metabotropic glutamate receptors (mGluRs) in Parkinson’s disease. Curr Opin Pharmacol. 2015;20:29–34.

    Google Scholar 

  • Austin PJ, Betts MJ, Broadstock M, O’Neill MJ, Mitchell SN, Duty S (2010) Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson’s disease. Br J Pharmacol 160:1741–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awad H, Hubert GW, Smith Y, Levey AI, Conn PJ (2000) Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci 20:7871–7879

    CAS  PubMed  Google Scholar 

  • Awad-Granko H, Conn PJ (2001) Activation of groups I or III metabotropic glutamate receptors inhibits excitatory transmission in the rat subthalamic nucleus. Neuropharmacology 41:32–41

    Article  CAS  PubMed  Google Scholar 

  • Bagetta V, Ghiglieri V, Sgobio C, Calabresi P, Picconi B (2010) Synaptic dysfunction in Parkinson’s disease. Biochem Soc Trans 38:493–497

    Article  CAS  PubMed  Google Scholar 

  • Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 24:9541–9552

    Article  CAS  PubMed  Google Scholar 

  • Bastide MF, Dovero S, Charron G, Porras G, Gross CE, Fernagut PO, Bezard E (2014) Immediate-early gene expression in structures outside the basal ganglia is associated to l-DOPA-induced dyskinesia. Neurobiol Dis 62:179–192

    Article  CAS  PubMed  Google Scholar 

  • Bastide MF et al (2015) Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Bruno V, Pisani A, Centonze D, Catania MV, Calabresi P, Nicoletti F (2001) Selective blockade of type-1 metabotropic glutamate receptors induces neuroprotection by enhancing gabaergic transmission. Mol Cell Neurosci 17:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Busceti CL, Molinaro G, Biagioni F, Storto M, Fornai F, Nicoletti F, Bruno V (2004) Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Neurosci 24:828–835

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Busceti CL, Molinaro G, Biagioni F, Traficante A, Nicoletti F, Bruno V (2006) Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci 26:7222–7229

    Article  CAS  PubMed  Google Scholar 

  • Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–787

    Article  CAS  PubMed  Google Scholar 

  • Benabid AL, Koudsie A, Benazzouz A, Piallat B, Krack P, Limousin-Dowsey P, Lebas JF, Pollak P (2001) Deep brain stimulation for Parkinson’s disease. Adv Neurol 86:405–412

    CAS  PubMed  Google Scholar 

  • Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8:67–81

    Article  PubMed  Google Scholar 

  • Bennouar KE, Uberti MA, Melon C, Bacolod MD, Jimenez HN, Cajina M, Kerkerian-Le GL, Doller D, Gubellini P (2013) Synergy between L-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology 66:158–169

    Article  CAS  PubMed  Google Scholar 

  • Berg D, Godau J, Trenkwalder C, Eggert K, Csoti I, Storch A, Huber H, Morelli-Canelo M, Stamelou M, Ries V, Wolz M, Schneider C, Di PT, Gasparini F, Hariry S, Vandemeulebroecke M, Bi-Saab W, Cooke K, Johns D, Gomez-Mancilla B (2011) AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord 26:1243–1250

    Article  PubMed  Google Scholar 

  • Betts MJ, O’Neill MJ, Duty S (2012) Allosteric modulation of the group III mGlu(4) receptor provides functional neuroprotection in the 6-hydroxydopamine rat model of Parkinson’s disease. Br J Pharmacol 166:2317–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beurrier C, Lopez S, Revy D, Selvam C, Goudet C, Lherondel M, Gubellini P, Kerkerian-Legoff L, Acher F, Pin JP, Amalric M (2009) Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J 23:3619–3628

    Article  CAS  PubMed  Google Scholar 

  • Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62:63–88

    Article  CAS  PubMed  Google Scholar 

  • Bogenpohl J, Galvan A, Hu X, Wichmann T, Smith Y (2013) Metabotropic glutamate receptor 4 in the basal ganglia of parkinsonian monkeys: ultrastructural localization and electrophysiological effects of activation in the striatopallidal complex. Neuropharmacology 66:242–252

    Article  CAS  PubMed  Google Scholar 

  • Bonsi P, Cuomo D, Picconi B, Sciamanna G, Tscherter A, Tolu M, Bernardi G, Calabresi P, Pisani A (2007) Striatal metabotropic glutamate receptors as a target for pharmacotherapy in Parkinson’s disease. Amino Acids 32:189–195

    Article  CAS  PubMed  Google Scholar 

  • Bradley SR, Standaert DG, Levey AI, Conn PJ (1999a) Distribution of group III mGluRs in rat basal ganglia with subtype-specific antibodies. Ann N Y Acad Sci 868:531–534

    Article  CAS  PubMed  Google Scholar 

  • Bradley SR, Standaert DG, Rhodes KJ, Rees HD, Testa CM, Levey AI, Conn PJ (1999b) Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia. J Comp Neurol 407:33–46

    Article  CAS  PubMed  Google Scholar 

  • Bradley SR, Marino MJ, Wittmann M, Rouse ST, Awad H, Levey AI, Conn PJ (2000) Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia Nigra pars reticulata. J Neurosci 20:3085–3094

    CAS  PubMed  Google Scholar 

  • Breysse N, Baunez C, Spooren W, Gasparini F, Amalric M. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J Neurosci. 2002;22:5669–5678.

    Google Scholar 

  • Breysse N, Amalric M, Salin P. Metabotropic glutamate 5 receptor blockade alleviates akinesia by normalizing activity of selective basal-ganglia structures in parkinsonian rats. J Neurosci. 2003;23:8302–8309.

    Google Scholar 

  • Brichta L, Greengard P, Flajolet M (2013) Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems. Trends Neurosci 36:543–554

    Article  CAS  PubMed  Google Scholar 

  • Broadstock M, Austin PJ, Betts MJ, Duty S (2012) Antiparkinsonian potential of targeting group III metabotropic glutamate receptor subtypes in the rodent substantia nigra pars reticulata. Br J Pharmacol 165:1034–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buttery PC, Barker RA (2014) Treating Parkinson’s disease in the 21st century: can stem cell transplantation compete? J Comp Neurol 522:2802–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di FM (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 17:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Chase TN (1998) Levodopa therapy: consequences of the nonphysiologic replacement of dopamine. Neurology 50:S17–S25

    Article  CAS  PubMed  Google Scholar 

  • Chase TN, Oh JD (2000) Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism. Trends Neurosci 23:S86–S91

    Article  CAS  PubMed  Google Scholar 

  • Chase TN, Bibbiani F, Oh JD (2003) Striatal glutamatergic mechanisms and extrapyramidal movement disorders. Neurotox Res 5:139–146

    Article  PubMed  Google Scholar 

  • Chen L, Liu J, Ali U, Gui ZH, Wang Y, Wang T, Hou C, Fan LL (2011) Blockade of mGluR5 reverses abnormal firing of subthalamic nucleus neurons in 6-hydroxydopamine partially lesioned rats. Chin J Phys 54:303–309

    CAS  Google Scholar 

  • Chuhma N, Choi WY, Mingote S, Rayport S (2009) Dopamine neuron glutamate cotransmission: frequency-dependent modulation in the mesoventromedial projection. Neuroscience 164:1068–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coccurello R, Breysse N, Amalric M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology. 2004;29:1451–1461.

    Google Scholar 

  • Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  CAS  PubMed  Google Scholar 

  • Conn PJ, Battaglia G, Marino MJ, Nicoletti F (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787–798

    Article  CAS  PubMed  Google Scholar 

  • Corti C, Aldegheri L, Somogyi P, Ferraguti F (2002) Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 110:403–420

    Article  CAS  PubMed  Google Scholar 

  • Cuomo D, Martella G, Barabino E, Platania P, Vita D, Madeo G, Selvam C, Goudet C, Oueslati N, Pin JP, Acher F, Pisani A, Beurrier C, Melon C, Kerkerian-Le GL, Gubellini P (2009) Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson’s disease treatment. J Neurochem 109:1096–1105

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24

    Article  PubMed  Google Scholar 

  • Engeln M, De DP, Li Q, Bezard E (2014) Fernagut PO. Widespread Monoaminergic Dysregulation of Both Motor and Non-Motor Circuits in Parkinsonism and Dyskinesia, Cereb Cortex

    Google Scholar 

  • Fasano A, Daniele A, Albanese A (2012) Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol 11:429–442

    Article  PubMed  Google Scholar 

  • Flor PJ, Acher FC (2012) Orthosteric versus allosteric GPCR activation: the great challenge of group-III mGluRs. Biochem Pharmacol 84:414–424

    Article  CAS  PubMed  Google Scholar 

  • Fuzzati-Armentero MT, Cerri S, Levandis G, Ambrosi G, Montepeloso E, Antoninetti G, Blandini F, Baqi Y, Muller CE, Volpini R, Costa G, Simola N, Pinna A (2015) Dual target strategy: combining distinct non-dopaminergic treatments reduces neuronal cell loss and synergistically modulates l-DOPA-induced rotational behavior in a rodent model of Parkinson’s disease. J Neurochem 134:740–747

    Article  CAS  PubMed  Google Scholar 

  • Galvan A, Kuwajima M, Smith Y (2006) Glutamate and GABA receptors and transporters in the basal ganglia: what does their subsynaptic localization reveal about their function? Neuroscience 143:351–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparini F, Di PT, Gomez-Mancilla B (2013) Metabotropic glutamate receptors for Parkinson’s disease therapy. Parkinsons Dis 2013:196028

    PubMed  PubMed Central  Google Scholar 

  • Gonzales KK, Smith Y (2015) Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 1349:1–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzales KK, Pare JF, Wichmann T, Smith Y (2013) GABAergic inputs from direct and indirect striatal projection neurons onto cholinergic interneurons in the primate putamen. J Comp Neurol 521:2502–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greco B, Lopez S, van der PH FPJ, Amalric M (2010) Metabotropic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 332:1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Guatteo E, Mercuri NB, Bernardi G, Knopfel T (1999) Group I metabotropic glutamate receptors mediate an inward current in rat substantia nigra dopamine neurons that is independent from calcium mobilization. J Neurophysiol 82:1974–1981

    CAS  PubMed  Google Scholar 

  • Gubellini P, Saulle E, Centonze D, Bonsi P, Pisani A, Bernardi G, Conquet F, Calabresi P (2001) Selective involvement of mGlu1 receptors in corticostriatal LTD. Neuropharmacology 40:839–846

    Article  CAS  PubMed  Google Scholar 

  • Gubellini P, Saulle E, Centonze D, Costa C, Tropepi D, Bernardi G, Conquet F, Calabresi P (2003) Corticostriatal LTP requires combined mGluR1 and mGluR5 activation. Neuropharmacology 44:8–16

    Article  CAS  PubMed  Google Scholar 

  • Gubellini P, Pisani A, Centonze D, Bernardi G, Calabresi P (2004) Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog Neurobiol 74:271–300

    Article  CAS  PubMed  Google Scholar 

  • Gubellini P, Salin P, Kerkerian-Le GL, Baunez C (2009) Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior. Prog Neurobiol 89:79–123

    Article  PubMed  Google Scholar 

  • Gubellini P, Melon C, Dale E, Doller D, Kerkerian-Le GL (2014) Distinct effects of mGlu4 receptor positive allosteric modulators at corticostriatal vs. striatopallidal synapses may differentially contribute to their antiparkinsonian action. Neuropharmacology 85C:166–177

    Article  CAS  Google Scholar 

  • Hanson JE, Smith Y (1999) Group I metabotropic glutamate receptors at GABAergic synapses in monkeys. J Neurosci 19:6488–6496

    CAS  PubMed  Google Scholar 

  • Hnasko TS, Chuhma N, Zhang H, Goh GY, Sulzer D, Palmiter RD, Rayport S, Edwards RH (2010) Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65:643–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins CR, Niswender CM, Lewis LM, Weaver CD, Lindsley CW. Discovery of a potent, selective and in vivo active mGluR4 positive allosteric modulator. 2010.

    Google Scholar 

  • Hovelso N, Sotty F, Montezinho LP, Pinheiro PS, Herrik KF, Mork A (2012) Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol 10:12–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh MH, Ho SC, Yeh KY, Pawlak CR, Chang HM, Ho YJ, Lai TJ, Wu FY (2012) Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson’s disease rat model. Pharmacol Biochem Behav 102:64–71

    Article  CAS  PubMed  Google Scholar 

  • Hubert GW, Smith Y (2004) Age-related changes in the expression of axonal and glial group I metabotropic glutamate receptor in the rat substantia nigra pars reticulata. J Comp Neurol 475:95–106

    Article  CAS  PubMed  Google Scholar 

  • Hubert GW, Paquet M, Smith Y (2001) Differential subcellular localization of mGluR1a and mGluR5 in the rat and monkey Substantia nigra. J Neurosci 21:1838–1847

    CAS  PubMed  Google Scholar 

  • Iderberg H, Maslava N, Thompson AD, Bubser M, Niswender CM, Hopkins CR, Lindsley CW, Conn PJ, Jones CK, Cenci MA (2015) Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson’s disease and l-DOPA-induced dyskinesia: Comparison between a positive allosteric modulator and an orthosteric agonist. Neuropharmacology 95:121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iskhakova L, Smith Y (2015) MGluR4-containing corticostriatal terminals: Synaptic interactions with direct and indirect pathway neurons in mice. Brain Struct Funct 221(9):4589–4599

    Article  CAS  Google Scholar 

  • Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Yan Z, Feng J (2006) Activation of group III metabotropic glutamate receptors attenuates rotenone toxicity on dopaminergic neurons through a microtubule-dependent mechanism. J Neurosci 26:4318–4328

    Article  CAS  PubMed  Google Scholar 

  • Johnson KA, Niswender CM, Conn PJ, Xiang Z (2011) Activation of group II metabotropic glutamate receptors induces long-term depression of excitatory synaptic transmission in the substantia nigra pars reticulata. Neurosci Lett 504:102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KA, Jones CK, Tantawy MN, Bubser M, Marvanova M, Ansari MS, Baldwin RM, Conn PJ, Niswender CM (2013) The metabotropic glutamate receptor 8 agonist (S)-3,4-DCPG reverses motor deficits in prolonged but not acute models of Parkinson’s disease. Neuropharmacology 66:187–195

    Article  CAS  PubMed  Google Scholar 

  • Jones CK, Engers DW, Thompson AD, Field JR, Blobaum AL, Lindsley SR, Zhou Y, Gogliotti RD, Jadhav S, Zamorano R, Bogenpohl J, Smith Y, Morrison R, Daniels JS, Weaver CD, Conn PJ, Lindsley CW, Niswender CM, Hopkins CR (2011) Discovery, Synthesis, and Structure-Activity Relationship Development of a Series of N-4-(2,5-Dioxopyrrolidin-1-yl)phenylpicolinamides (VU0400195, ML182): Characterization of a Novel Positive Allosteric Modulator of the Metabotropic Glutamate Receptor 4 (mGlu(4)) with Oral Efficacy in an Antiparkinsonian Animal Model. J Med Chem 54:7639–7647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones CK, Bubser M, Thompson AD, Dickerson JW, Turle-Lorenzo N, Amalric M, Blobaum AL, Bridges TM, Morrison RD, Jadhav S, Engers DW, Italiano K, Bode J, Daniels JS, Lindsley CW, Hopkins CR, Conn PJ, Niswender CM (2012) The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson’s disease. J Pharmacol Exp Ther 340:404–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn L, Alonso G, Robbe D, Bockaert J, Manzoni OJ (2001) Group 2 metabotropic glutamate receptors induced long term depression in mouse striatal slices. Neurosci Lett 316:178–182

    Article  CAS  PubMed  Google Scholar 

  • Kaneda K, Tachibana Y, Imanishi M, Kita H, Shigemoto R, Nambu A, Takada M (2005) Down-regulation of metabotropic glutamate receptor 1alpha in globus pallidus and substantia nigra of parkinsonian monkeys. Eur J Neurosci 22:3241–3254

    Article  CAS  PubMed  Google Scholar 

  • Kaneda K, Kita T, Kita H (2007) Repetitive activation of glutamatergic inputs evokes a long-lasting excitation in rat globus pallidus neurons in vitro. J Neurophysiol 97:121–133

    Article  CAS  PubMed  Google Scholar 

  • Karas PJ, Mikell CB, Christian E, Liker MA, Sheth SA (2013) Deep brain stimulation: a mechanistic and clinical update. Neurosurg Focus 35:E1

    Article  PubMed  Google Scholar 

  • Katayama J, Akaike N, Nabekura J (2003) Characterization of pre- and post-synaptic metabotropic glutamate receptor-mediated inhibitory responses in substantia nigra dopamine neurons. Neurosci Res 45:101–115

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita A, Shigemoto R, Ohishi H (1998) van der PH, Mizuno N. Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: a light and electron microscopic study. J Comp Neurol 393:332–352

    Article  CAS  PubMed  Google Scholar 

  • Konieczny J, Lenda T (2013) Contribution of the mGluR7 receptor to antiparkinsonian-like effects in rats: a behavioral study with the selective agonist AMN082. Pharmacol Rep 65:1194–1203

    Article  CAS  PubMed  Google Scholar 

  • Konieczny J, Wardas J, Kuter K, Pilc A, Ossowska K (2007) The influence of group III metabotropic glutamate receptor stimulation by (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid on the parkinsonian-like akinesia and striatal proenkephalin and prodynorphin mRNA expression in rats. Neuroscience 145:611–620

    Article  CAS  PubMed  Google Scholar 

  • Kosinski CM, Risso BS, Conn PJ, Levey AI, Landwehrmeyer GB, Penney JB Jr, Young AB, Standaert DG (1999) Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. J Comp Neurol 415:266–284

    Article  CAS  PubMed  Google Scholar 

  • Kupferschmidt DA, Lovinger DM (2015) Inhibition of presynaptic calcium transients in cortical inputs to the dorsolateral striatum by metabotropic GABA(B) and mGlu2/3 receptors. J Physiol 593:2295–2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuramoto E, Fujiyama F, Unzai T, Nakamura K, Hioki H, Furuta T, Shigemoto R, Ferraguti F, Kaneko T (2007) Metabotropic glutamate receptor 4-immunopositive terminals of medium-sized spiny neurons selectively form synapses with cholinergic interneurons in the rat neostriatum. J Comp Neurol 500:908–922

    Article  CAS  PubMed  Google Scholar 

  • Kuwajima M, Hall RA, Aiba A, Smith Y (2004) Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the monkey subthalamic nucleus. J Comp Neurol 474:589–602

    Article  CAS  PubMed  Google Scholar 

  • Kuwajima M, Dehoff MH, Furuichi T, Worley PF, Hall RA, Smith Y (2007) Localization and expression of group I metabotropic glutamate receptors in the mouse striatum, globus pallidus, and subthalamic nucleus: regulatory effects of MPTP treatment and constitutive Homer deletion. J Neurosci 27:6249–6260

    Article  CAS  PubMed  Google Scholar 

  • Le Poul E, Bolea C, Girard F, Poli S, Charvin D, Campo B, Bortoli J, Bessif A, Luo B, Koser AJ, Hodge LM, Smith KM, DiLella AG, Liverton N, Hess F, Browne SE, Reynolds IJ (2012) A potent and selective metabotropic glutamate receptor 4 positive allosteric modulator improves movement in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 343:167–177

    Article  PubMed  CAS  Google Scholar 

  • Levandis G, Bazzini E, Armentero MT, Nappi G, Blandini F (2008) Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis 29:161–168

    Article  CAS  PubMed  Google Scholar 

  • Levy R, Hazrati LN, Herrero MT, Vila M, Hassani OK, Mouroux M, Ruberg M, Asensi H, Agid Y, Feger J, Obeso JA, Parent A, Hirsch EC (1997) Re-evaluation of the functional anatomy of the basal ganglia in normal and Parkinsonian states. Neuroscience 76:335–343

    Article  CAS  PubMed  Google Scholar 

  • Li X, Gardner EL, Xi ZX (2008) The metabotropic glutamate receptor 7 (mGluR7) allosteric agonist AMN082 modulates nucleus accumbens GABA and glutamate, but not dopamine, in rats. Neuropharmacology 54:542–551

    Article  CAS  PubMed  Google Scholar 

  • Lopez S, Turle-Lorenzo N, Acher F, De LE, Mele A, Amalric M (2007) Targeting group III metabotropic glutamate receptors produces complex behavioral effects in rodent models of Parkinson’s disease. J Neurosci 27:6701–6711

    Article  CAS  PubMed  Google Scholar 

  • Lopez S, Turle-Lorenzo N, Johnston TH, Brotchie JM, Schann S, Neuville P, Amalric M (2008) Functional interaction between adenosine A2A and group III metabotropic glutamate receptors to reduce parkinsonian symptoms in rats. Neuropharmacology 55:483–490

    Article  CAS  PubMed  Google Scholar 

  • Lopez S, Bonito-Oliva A, Pallottino S, Acher F, Fisone G (2011) Activation of metabotropic glutamate 4 receptors decreases L-DOPA-induced dyskinesia in a mouse model of Parkinson’s disease. J Parkinsons Dis 1:339–346

    CAS  PubMed  Google Scholar 

  • Lopez S, Jouve L, Turle-Lorenzo N, Kerkerian-Legoff L, Salin P, Amalric M (2012) Antiparkinsonian action of a selective group III mGlu receptor agonist is associated with reversal of subthalamonigral overactivity. Neurobiol Dis 46:69–77

    Article  CAS  PubMed  Google Scholar 

  • Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovinger DM, McCool BA (1995) Metabotropic glutamate receptor-mediated presynaptic depression at corticostriatal synapses involves mGLuR2 or 3. J Neurophysiol 73:1076–1083

    CAS  PubMed  Google Scholar 

  • Mansouri M, Kasugai Y, Fukazawa Y, Bertaso F, Raynaud F, Perroy J, Fagni L, Kaufmann WA, Watanabe M, Shigemoto R, Ferraguti F (2015) Distinct subsynaptic localization of type 1 metabotropic glutamate receptors at glutamatergic and GABAergic synapses in the rodent cerebellar cortex. Eur J Neurosci 41:157–167

    Article  PubMed  Google Scholar 

  • Maranis S, Stamatis D, Tsironis C, Konitsiotis S (2012) Investigation of the antidyskinetic site of action of metabotropic and ionotropic glutamate receptor antagonists. Intracerebral infusions in 6-hydroxydopamine-lesioned rats with levodopa-induced dyskinesia. Eur J Pharmacol 683:71–77

    Article  CAS  PubMed  Google Scholar 

  • Marino MJ, Wittmann M, Bradley SR, Hubert GW, Smith Y, Conn PJ (2001) Activation of group I metabotropic glutamate receptors produces a direct excitation and disinhibition of GABAergic projection neurons in the substantia nigra pars reticulata. J Neurosci 21:7001–7012

    CAS  PubMed  Google Scholar 

  • Marino MJ, Wad-Granko H, Ciombor KJ, Conn PJ (2002) Haloperidol-induced alteration in the physiological actions of group I mGlus in the subthalamic nucleus and the substantia nigra pars reticulata. Neuropharmacology 43:147–159

    Article  CAS  PubMed  Google Scholar 

  • Marino MJ, Williams DL Jr, O’Brien JA, Valenti O, McDonald TP, Clements MK, Wang R, DiLella AG, Hess JF, Kinney GG, Conn PJ (2003) Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. Proc Natl Acad Sci U S A 100:13668–13673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti M, Paganini F, Stocchi S, Bianchi C, Beani L, Morari M (2001) Presynaptic group I and II metabotropic glutamate receptors oppositely modulate striatal acetylcholine release. Eur J Neurosci 14:1181–1184

    Article  CAS  PubMed  Google Scholar 

  • Masilamoni GJ, Bogenpohl JW, Alagille D, Delevich K, Tamagnan G, Votaw JR, Wichmann T, Smith Y. Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain. 2011;134:2057–2073.

    Google Scholar 

  • Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA (2007) Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem 101:483–497

    Article  CAS  PubMed  Google Scholar 

  • Messenger MJ, Dawson LG, Duty S (2002) Changes in metabotropic glutamate receptor 1-8 gene expression in the rodent basal ganglia motor loop following lesion of the nigrostriatal tract. Neuropharmacology 43:261–271

    Article  CAS  PubMed  Google Scholar 

  • Mitrano DA, Smith Y (2007) Comparative analysis of the subcellular and subsynaptic localization of mGluR1a and mGluR5 metabotropic glutamate receptors in the shell and core of the nucleus accumbens in rat and monkey. J Comp Neurol 500:788–806

    Article  CAS  PubMed  Google Scholar 

  • Morin N, Morissette M, Gregoire L, Gomez-Mancilla B, Gasparini F, Di PT (2013) Chronic treatment with MPEP, an mGlu5 receptor antagonist, normalizes basal ganglia glutamate neurotransmission in L-DOPA-treated parkinsonian monkeys. Neuropharmacology 73:216–231

    Article  CAS  PubMed  Google Scholar 

  • Murray TK, Messenger MJ, Ward MA, Woodhouse S, Osborne DJ, Duty S, O’Neill MJ (2002) Evaluation of the mGluR2/3 agonist LY379268 in rodent models of Parkinson’s disease. Pharmacol Biochem Behav 73:455–466

    Article  CAS  PubMed  Google Scholar 

  • Niswender CM, Johnson KA, Weaver CD, Jones CK, Xiang Z, Luo Q, Rodriguez AL, Marlo JE, de Paulis T, Thompson AD, Days EL, Nalywajko T, Austin CA, Williams MB, Ayala JE, Williams R, Lindsley CW, Conn PJ (2008) Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol Pharmacol 74:1345–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nusser Z, Mulvihill E, Streit P, Somogyi P (1994) Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61:421–427

    Article  CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23:S8–19

    Article  CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548–S559

    Article  PubMed  Google Scholar 

  • Olanow CW (2007) The pathogenesis of cell death in Parkinson’s disease. Mov Disord 22(Suppl 17):S335–S342

    Article  PubMed  Google Scholar 

  • Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basis for the treatment of Parkinson disease. Neurology 72:S1–136

    Article  PubMed  Google Scholar 

  • Ossowska K, Konieczny J, Wardas J, Pietraszek M, Kuter K, Wolfarth S, Pilc A (2007) An influence of ligands of metabotropic glutamate receptor subtypes on parkinsonian-like symptoms and the striatopallidal pathway in rats. Amino Acids 32:179–188

    Article  CAS  PubMed  Google Scholar 

  • Ouattara B, Gregoire L, Morissette M, Gasparini F, Vranesic I, Bilbe G, Johns DR, Rajput A, Hornykiewicz O, Rajput AH, Gomez-Mancilla B, Di PT (2011) Metabotropic glutamate receptor type 5 in levodopa-induced motor complications. Neurobiol Aging 32:1286–1295

    Article  CAS  PubMed  Google Scholar 

  • Oueslati A, Breysse N, Amalric M, Kerkerian-Le GL, Salin P (2005) Dysfunction of the cortico-basal ganglia-cortical loop in a rat model of early parkinsonism is reversed by metabotropic glutamate receptor 5 antagonism. Eur J Neurosci 22:2765–2774

    Article  PubMed  Google Scholar 

  • Paquet M, Smith Y (2003) Group I metabotropic glutamate receptors in the monkey striatum: subsynaptic association with glutamatergic and dopaminergic afferents. J Neurosci 23:7659–7669

    CAS  PubMed  Google Scholar 

  • Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ (1996) The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71:949–976

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Lam HA, Ackerson LC, Maidment NT (2006) Blockade of mGluR glutamate receptors in the subthalamic nucleus ameliorates motor asymmetry in an animal model of Parkinson’s disease. Eur J Neurosci 23:151–160

    Article  PubMed  Google Scholar 

  • Picconi B, Pisani A, Centonze D, Battaglia G, Storto M, Nicoletti F, Bernardi G, Calabresi P (2002) Striatal metabotropic glutamate receptor function following experimental parkinsonism and chronic levodopa treatment. Brain 125:2635–2645

    Article  PubMed  Google Scholar 

  • Picconi B, Piccoli G, Calabresi P (2012) Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 970:553–572

    Article  CAS  PubMed  Google Scholar 

  • Pin JP, Acher F (2002) The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Neurol Disord 1:297–317

    Article  CAS  PubMed  Google Scholar 

  • Pisani A, Bonsi P, Centonze D, Bernardi G, Calabresi P (2001a) Functional coexpression of excitatory mGluR1 and mGluR5 on striatal cholinergic interneurons. Neuropharmacology 40:460–463

    Article  CAS  PubMed  Google Scholar 

  • Pisani A, Gubellini P, Bonsi P, Conquet F, Picconi B, Centonze D, Bernardi G, Calabresi P (2001b) Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience 106:579–587

    Article  CAS  PubMed  Google Scholar 

  • Pisani A, Bonsi P, Catania MV, Giuffrida R, Morari M, Marti M, Centonze D, Bernardi G, Kingston AE, Calabresi P (2002) Metabotropic glutamate 2 receptors modulate synaptic inputs and calcium signals in striatal cholinergic interneurons. J Neurosci 22:6176–6185

    CAS  PubMed  Google Scholar 

  • Pisani A, Bonsi P, Centonze D, Gubellini P, Bernardi G, Calabresi P (2003) Targeting striatal cholinergic interneurons in Parkinson’s disease: focus on metabotropic glutamate receptors. Neuropharmacology 45:45–56

    Article  CAS  PubMed  Google Scholar 

  • Pisani A, Bernardi G, Ding J, Surmeier DJ (2007) Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci 30:545–553

    Article  CAS  PubMed  Google Scholar 

  • Poisik OV, Mannaioni G, Traynelis S, Smith Y, Conn PJ (2003) Distinct functional roles of the metabotropic glutamate receptors 1 and 5 in the rat globus pallidus. J Neurosci 23:122–130

    PubMed  Google Scholar 

  • Poisik O, Raju DV, Verreault M, Rodriguez A, Abeniyi OA, Conn PJ, Smith Y (2005) Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus. Neuropharmacology 49(Suppl 1):57–69

    Article  CAS  PubMed  Google Scholar 

  • Poisik OV, Smith Y, Conn PJ (2007) D1- and D2-like dopamine receptors regulate signaling properties of group I metabotropic glutamate receptors in the rat globus pallidus. Eur J Neurosci 26:852–862

    Article  PubMed  Google Scholar 

  • Prisco S, Natoli S, Bernardi G, Mercuri NB (2002) Group I metabotropic glutamate receptors activate burst firing in rat midbrain dopaminergic neurons. Neuropharmacology 42:289–296

    Article  CAS  PubMed  Google Scholar 

  • Rascol O, Fox S, Gasparini F, Kenney C, Di PT, Gomez-Mancilla B (2014) Use of metabotropic glutamate 5-receptor antagonists for treatment of levodopa-induced dyskinesias. Parkinsonism Relat Disord 20:947–956

    Article  PubMed  Google Scholar 

  • Rizzone MG, Fasano A, Daniele A, Zibetti M, Merola A, Rizzi L, Piano C, Piccininni C, Romito LM, Lopiano L, Albanese A (2014) Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: from the advanced phase towards the late stage of the disease? Parkinsonism Relat Disord 20:376–381

    Article  CAS  PubMed  Google Scholar 

  • Rosa M, Giannicola G, Marceglia S, Fumagalli M, Barbieri S, Priori A (2012) Neurophysiology of deep brain stimulation. Int Rev Neurobiol 107:23–55

    Article  PubMed  Google Scholar 

  • Rylander D, Recchia A, Mela F, Dekundy A, Danysz W, Cenci MA (2009) Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther 330:227–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samadi P, Gregoire L, Morissette M, Calon F, Hadj TA, Belanger N, Dridi M, Bedard PJ, Di PT (2008a) Basal ganglia group II metabotropic glutamate receptors specific binding in non-human primate model of L-Dopa-induced dyskinesias. Neuropharmacology 54:258–268

    Article  CAS  PubMed  Google Scholar 

  • Samadi P, Gregoire L, Morissette M, Calon F, Hadj TA, Dridi M, Belanger N, Meltzer LT, Bedard PJ, Di PT (2008b) mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 29:1040–1051

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26:1049–1055

    Article  PubMed  Google Scholar 

  • Schapira AH, Olanow CW, Greenamyre JT, Bezard E (2014) Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet 384:545–555

    Article  CAS  PubMed  Google Scholar 

  • Sergeeva OA, Doreulee N, Chepkova AN, Kazmierczak T, Haas HL (2007) Long-term depression of cortico-striatal synaptic transmission by DHPG depends on endocannabinoid release and nitric oxide synthesis. Eur J Neurosci 26:1889–1894

    Article  CAS  PubMed  Google Scholar 

  • Shen KZ, Johnson SW (2003) Group II metabotropic glutamate receptor modulation of excitatory transmission in rat subthalamic nucleus. J Physiol 553:489–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen KZ, Johnson SW (2013) Group I mGluRs evoke K-ATP current by intracellular Ca2+ mobilization in rat subthalamus neurons. J Pharmacol Exp Ther 345:139–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibille P, Lopez S, Brabet I, Valenti O, Oueslati N, Gaven F, Goudet C, Bertrand HO, Neyton J, Marino MJ, Amalric M, Pin JP, Acher FC (2007) Synthesis and biological evaluation of 1-amino-2-phosphonomethylcyclopropanecarboxylic acids, new group III metabotropic glutamate receptor agonists. J Med Chem 50:3585–3595

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Charara A, Hanson JE, Paquet M, Levey AI (2000) GABA(B) and group I metabotropic glutamate receptors in the striatopallidal complex in primates. J Anat 196(Pt 4):555–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith Y, Charara A, Paquet M, Kieval JZ, Pare JF, Hanson JE, Hubert GW, Kuwajima M, Levey AI (2001) Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia. J Chem Neuroanat 22:13–42

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Wichmann T, Factor SA, DeLong MR (2012) Parkinson’s disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 37:213–246

    Article  CAS  PubMed  Google Scholar 

  • Stocchi F, Rascol O, Destee A, Hattori N, Hauser RA, Lang AE, Poewe W, Stacy M, Tolosa E, Gao H, Nagel J, Merschhemke M, Graf A, Kenney C, Trenkwalder C (2013) AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Mov Disord 28:1838–1846

    Article  CAS  PubMed  Google Scholar 

  • Sun XR, Chen L, Chen WF, Yung WH (2012) Electrophysiological and behavioral effects of group I metabotropic glutamate receptors on pallidal neurons in rats. Brain Res 1477:1–9

    Article  CAS  PubMed  Google Scholar 

  • Sun XR, Chen L, Chen WF, Xue Y, Yung WH (2013) Electrophysiological and behavioral effects of group III metabotropic glutamate receptors on pallidal neurons in normal and parkinsonian rats. Synapse 67:831–838

    Article  CAS  PubMed  Google Scholar 

  • Sung KW, Choi S, Lovinger DM (2001) Activation of group I mGluRs is necessary for induction of long-term depression at striatal synapses. J Neurophysiol 86:2405–2412

    CAS  PubMed  Google Scholar 

  • Tallaksen-Greene SJ, Kaatz KW, Romano C, Albin RL (1998) Localization of mGluR1a-like immunoreactivity and mGluR5-like immunoreactivity in identified populations of striatal neurons. Brain Res 780:210–217

    Article  CAS  PubMed  Google Scholar 

  • Tamaru Y, Nomura S, Mizuno N, Shigemoto R (2001) Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 106:481–503

    Article  CAS  PubMed  Google Scholar 

  • Testa CM, Standaert DG, Young AB, Penney JB Jr (1994) Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 14:3005–3018

    CAS  PubMed  Google Scholar 

  • Testa CM, Standaert DG, Landwehrmeyer GB, Penney JB Jr, Young AB (1995) Differential expression of mGluR5 metabotropic glutamate receptor mRNA by rat striatal neurons. J Comp Neurol 354:241–252

    Article  CAS  PubMed  Google Scholar 

  • Testa CM, Friberg IK, Weiss SW, Standaert DG (1998) Immunohistochemical localization of metabotropic glutamate receptors mGluR1a and mGluR2/3 in the rat basal ganglia. J Comp Neurol 390:5–19

    Article  CAS  PubMed  Google Scholar 

  • Trudeau LE, Hnasko TS, Wallen-Mackenzie A, Morales M, Rayport S, Sulzer D (2014) The multilingual nature of dopamine neurons. Prog Brain Res 211:141–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenti O, Conn PJ, Marino MJ (2002) Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors Co-expressed in the same neuronal populations. J Cell Physiol 191:125–137

    Article  CAS  PubMed  Google Scholar 

  • Valenti O, Marino MJ, Wittmann M, Lis E, DiLella AG, Kinney GG, Conn PJ (2003) Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J Neurosci 23:7218–7226

    CAS  PubMed  Google Scholar 

  • Valenti O, Mannaioni G, Seabrook GR, Conn PJ, Marino MJ (2005) Group III metabotropic glutamate-receptor-mediated modulation of excitatory transmission in rodent substantia nigra pars compacta dopamine neurons. J Pharmacol Exp Ther 313:1296–1304

    Article  CAS  PubMed  Google Scholar 

  • Vernon AC, Palmer S, Datla KP, Zbarsky V, Croucher MJ, Dexter DT (2005) Neuroprotective effects of metabotropic glutamate receptor ligands in a 6-hydroxydopamine rodent model of Parkinson’s disease. Eur J Neurosci 22:1799–1806

    Article  CAS  PubMed  Google Scholar 

  • Vernon AC, Zbarsky V, Datla KP, Croucher MJ, Dexter DT (2007a) Subtype selective antagonism of substantia nigra pars compacta Group I metabotropic glutamate receptors protects the nigrostriatal system against 6-hydroxydopamine toxicity in vivo. J Neurochem 103:1075–1091

    Article  CAS  PubMed  Google Scholar 

  • Vernon AC, Zbarsky V, Datla KP, Dexter DT, Croucher MJ (2007b) Selective activation of group III metabotropic glutamate receptors by L-(+)-2-amino-4-phosphonobutryic acid protects the nigrostriatal system against 6-hydroxydopamine toxicity in vivo. J Pharmacol Exp Ther 320:397–409

    Article  CAS  PubMed  Google Scholar 

  • Wichmann T, Dostrovsky JO (2011) Pathological basal ganglia activity in movement disorders. Neuroscience 198:232–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittmann M, Hubert GW, Smith Y, Conn PJ (2001) Activation of metabotropic glutamate receptor 1 inhibits glutamatergic transmission in the substantia nigra pars reticulata. Neuroscience 105:881–889

    Article  CAS  PubMed  Google Scholar 

  • Wittmann M, Marino MJ, Conn PJ (2002) Dopamine modulates the function of group II and group III metabotropic glutamate receptors in the substantia nigra pars reticulata. J Pharmacol Exp Ther 302:433–441

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Lovinger DM (2006) Frequency-specific and D2 receptor-mediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proc Natl Acad Sci U S A 103:8251–8256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Gubellini Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gubellini, P., Iskhakova, L., Smith, Y., Amalric, M. (2017). Metabotropic Glutamate Receptors and Parkinson’s Disease: Basic and Preclinical Neuroscience. In: Ngomba, R., Di Giovanni, G., Battaglia, G., Nicoletti, F. (eds) mGLU Receptors. The Receptors, vol 31. Humana Press, Cham. https://doi.org/10.1007/978-3-319-56170-7_3

Download citation

Publish with us

Policies and ethics