Skip to main content

Diagnosis of Inflammatory Bone Diseases

  • Chapter
  • First Online:

Abstract

For the early diagnosis of skeletal infections, the combined and coordinated efforts of the clinician and imaging specialist are crucial. Successful early diagnosis results in prompt treatment, which in turn may reduce morbidity. This chapter focuses on the complexities surrounding this clinical question. Knowledge of the pathophysiology of skeletal infection, as well as of the strengths and limitations of the multitude of imaging modalities available, aids clinicians in making a timely diagnosis. Information regarding the location of a suspected infection, the patient’s age, and the history of other conditions such as diabetes, arthritis, trauma, and prior surgery needs to be available to nuclear medicine physicians and radiologists. These factors will affect the choice of optimal imaging modality. For any suspected skeletal infection, the initial modality is the standard radiograph. If this simple and inexpensive diagnostic test is not conclusive, other modalities should be considered particularly bone scan. Currently, magnetic resonance imaging (MRI) or a combination of bone and gallium scanning is the modality of choice for spondylodiscitis. Infection of the diabetic foot is best imaged with combined (preferably simultaneous) bone- and white blood cell-labeled scintigraphy, best using SPECT/CT when available. Bone scans for suspected neonatal osteomyelitis have been found to be sensitive and specific for diagnosis. Advances in imaging technology, such as positron emission tomography (PET) and antibody labeling, provide other options, which improve the speed and accuracy with which osteomyelitis can be diagnosed. Utilizing the techniques widely used currently, an algorithm for the diagnosis of skeletal infection which incorporates the abovementioned variables and complicating conditions is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Granger DN, Senchenkova E (2010) Inflammation and the microcirculation. Morgan & Claypool Life Sciences, San Rafael, CA, pp 5–6

    Google Scholar 

  2. Rote NSV (1998) Inflammation. In: McCance KL, Huether SE (eds) Pathophysiology, 3rd edn. Mosby, St Louis, pp 205–236

    Google Scholar 

  3. Kumar JV, Abbas AK, Astor JC (2015) Inflammation and repair. In: Kumar JV, Abbas AK, Astor JC (eds) Robins and Cotran Pathologic basis of disease, 9th edn. Elsevier-Saunders, Philadelphia, PA, pp 69–112

    Google Scholar 

  4. Freifeld AG, Pizzo PA, Walsh TJ (1997) Infections in the cancer patient. In: Devita VT, Hellman S, Rosenberg SA (eds) Principles and practice of oncology, 5th edn. Lippincott Raven, Philadelphia, PA, pp 2659–2704

    Google Scholar 

  5. Trueta J (1957) The normal vascular anatomy of the human femoral head during growth. J Bone Joint Surg 39B:358–394

    Google Scholar 

  6. Trueta J (1959) The three types of acute hematogenous osteomyelitis: a clinical and vascular study. J Bone Joint Surg 41B:671–680

    Google Scholar 

  7. Cierny G, Mader JT, Pennick HA (1985) Clinical staging system of adult osteomyelitis. Contemp Orthop 10:17–37

    Google Scholar 

  8. Waldvogel FA, Medoff G, Swartz MM (1970) Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects. N Engl J Med 282:198–206

    Article  CAS  PubMed  Google Scholar 

  9. Elgazzar AH, Shehab D, Malki A, Abdulla M (2001) Musculoskeletal system. In: Elgazzar AH (ed) The pathophysiologic basis of nuclear medicine. Springer, Berlin, pp 88–102

    Google Scholar 

  10. Resnick D, Niwayama G (1995) Osteomyelitis, septic arthritis and soft tissue infection: mechanisms and situations. In: Resnick D (ed) Diagnosis of bone and joint disorders, 3rd edn. WB Saunders, Philadelphia, PA, pp 2325–2418

    Google Scholar 

  11. Kahn DS, Pritzker KPH (1973) The pathophysiology of bone infection. Clin Orthop Rel Res 96:12

    Google Scholar 

  12. Bonakdar-Pour A, Gaines VD (1983) The radiology of osteomyelitis. Orthop Clin North Am 14:21–37

    CAS  PubMed  Google Scholar 

  13. Georgans ED, McEvoy A, Watson M, Barrett IR (2005) Acute osteomyelitis and septic arthritis in children. J Pedtric Child Health 41:59–62

    Article  Google Scholar 

  14. Nixon GW (1976) Acute hematogenous osteomyelitis. Pediatr Ann 5:64–81

    Article  CAS  PubMed  Google Scholar 

  15. Kasser JR (1984) Hematogenous osteomyelitis: untangling the diagnostic confusion. Postgrad Med 76:79–86

    Article  CAS  PubMed  Google Scholar 

  16. Elgazzar AH, Abdel-Dayem HM (1999) Imaging skeletal infections: evolving considerations. In: Freeman LM (ed) Nuclear medicine annual. Lippincott Williams and Wilkins, Philadelphia, PA, pp 157–191

    Google Scholar 

  17. Elgazzar AH, Abdel-Dayem HM, Clark J, Maxon HR (1995) Multimodality imaging of osteomyelitis. Eur J Nucl Med 22:1043–1063

    Article  CAS  PubMed  Google Scholar 

  18. Torda AJ, Gottlieb T, Bradbury R (1995) Pyogenic vertebral osteomyelitis: analysis of 20 cases and review. Clin Infect Dis 20:320–328

    Article  CAS  PubMed  Google Scholar 

  19. Song KS, Ogden JA, Ganey T, Guidera KT (1997) Contiguous discitis and osteomyelitis in children. J Pediatr Orthop 17:470–477

    CAS  PubMed  Google Scholar 

  20. Ring D, Wenger DR, Johnson C (1994) Infectious spondylitis in children. The convergence of discitis and vertebral osteomyelitis. Orthop Trans 18:97–98

    Google Scholar 

  21. Waldvogel FA, Vasey H (1980) Osteomyelitis: the past decade. N Engl J Med 303:360–370

    Article  CAS  PubMed  Google Scholar 

  22. Perrone C, Saba J, Behloul Z, Salmon-Ceron D, Leport C, Vilde JL, Kahn MF (1994) Pyogenic and tuberculous spondylodiskitis (vertebral osteomyelitis) in 80 adult patients. Clin Infect Dis 19:746–750

    Article  Google Scholar 

  23. Fernandez M, Carrol CL, Baker CJ (2000) Discitis and vertebral osteomyelitis in children: an 18 year review. Pediatrics 15:1299–1304

    Article  Google Scholar 

  24. Forrest RD, Jacobson CA, Yudkin JS (1986) Glucose intolerance and hypertension in north London: the Islington diabetes survey. Diabet Med 3:338–342

    Article  CAS  PubMed  Google Scholar 

  25. Forrest RD, Jacobson CA, Yudkin JS, Bamberger DM, Daus GP, Gerding DN (1987) Osteomyelitis in the feet of diabetic patients: long term results, prognostic factors, and the role of antimicrobial and surgical therapy. Am J Med 83:653–660

    Article  Google Scholar 

  26. Schwartz GS, Berenyi MR, Siegel MW (1969) Atrophic arthropathy and diabetic neuritis. AJR 106:523–529

    Article  Google Scholar 

  27. Horwitz SH (1993) Diabetic neuropathy. Clin Orthop 296:78–85

    Google Scholar 

  28. Gold RH, Tang DTF, Crim JR, Seeger LL (1995) Imaging the diabetic foot. Skeletal Radiol 24:563–557

    Article  CAS  PubMed  Google Scholar 

  29. Giurini JM, Chizan JS, Gibbons GW et al (1991) Charcot’s Joint in diabetic patients. Postgrad Med 89:163–169

    Article  CAS  PubMed  Google Scholar 

  30. Rand JA (1995) Preoperative planning for total knee arthroplasty. In: Callaghan JJ, Dennis DA, Paprosky WG, Rosenberg AG (eds) Orthopedic knowledge update. Hip and knee reconstruction. American Academy of Orthopedic Surgeons, Rosemont, IL

    Google Scholar 

  31. Anonymous (1995) Proceedings of the American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 255–263

    Google Scholar 

  32. Griffiths HJ (1995) Orthopedic complications. Radiol Clin North Am 33:401–410

    CAS  PubMed  Google Scholar 

  33. Seabald JE, Nepola JV (1999) Imaging techniques for evaluation of postoperative orthopedic infections. Quart J Nucl Med 43:21–28

    Google Scholar 

  34. Harris WH, Sledge CB (1990) Total hip and total knee replacement, part I. NEJM 323:725–731

    Article  CAS  PubMed  Google Scholar 

  35. Harris WH, Sledge CB (1990) Total hip and total knee replacement, part II. NEJM 323:801–807

    Article  CAS  PubMed  Google Scholar 

  36. Johnson JA, Christle MJ, Sandler MP, Parks PF Jr, Horma L, Kayle JJ (1988) Detection of occult infection following total joint arthroplasty using sequential technetium-99m HDP bone scintigraphy and Indium-111 WBC imaging. J Nucl Med 29:1347–1353

    CAS  PubMed  Google Scholar 

  37. Barton LL, Dunkle LM, Habib FH (1987) Septic arthritis in childhood: a 13 year review. Am J Dis Child 141:898–900

    Article  CAS  PubMed  Google Scholar 

  38. Welkon CJ, Long SS, Fisher MC, Alburger PD (1986) Pyogenic arthritis in infants and children: a review of 95 cases. Pediatr Infect Dis 5:669–676

    Article  CAS  PubMed  Google Scholar 

  39. Silberstein EB, Elgazzar AH, Fernandez-Uloa M, Nishiyama H (1996) Skeletal scintigraphy in non-neoplatic osseous disorders. In: Henkin RE, Bles MA, Dillehay GL, Halama JR, Karesh SM, Wagner PH, Zimmer AM (eds) Textbook of nuclear medicine. Mosby, New York, pp 1141–1197

    Google Scholar 

  40. Nixon GW (1978) Hematogenous osteomyelitis of metaphyseal equivalent locations. AJR 130:123–129

    Article  CAS  PubMed  Google Scholar 

  41. Cole WG, Dalziel RE, Leitl S (1982) Treatment of acute osteomyelitis in childhood. J Bone Joint Surg Br 64:208–213

    Article  Google Scholar 

  42. Harris NH (1960) Some problems in the diagnosis and treatment of acute osteomyelitis. J Bone Joint Surg Br 42:535–541

    PubMed  Google Scholar 

  43. Seabald JE, Nepola JV, Marsh JL et al (1991) Post operative bone marrow alterations: Potential pitfalls in the diagnosis of osteomyelitis with In-111-labeled leukocyte scintigraphy. Radiology 180:741–747

    Article  Google Scholar 

  44. Bayoun C, Elgazzar AH (2002) Skeletal infections. Presented at radiologic society of North America annual meeting.

    Google Scholar 

  45. Riebel T, Nasir R, Nazarenko O (1996) The value of sonography in the detection of osteomyelitis. Pediatr Radiol 26:291–297

    Article  CAS  PubMed  Google Scholar 

  46. Howard CB, Einhorn M, Dagan R, Nyaska M (1993) Ultrasound in diagnosis and management of acute hematogenous osteomyelitis in children. J Bone Gurs (Br) 75:79–82

    CAS  Google Scholar 

  47. Abernethy LJ, Lee YC, Cole WG (1993) Ultrasound localization of subperiosteal abscess in children with late acute osteomyelitis. J Pediatr Orthop 13:766–768

    Article  CAS  PubMed  Google Scholar 

  48. Jien Y, Chih H, Lin G, Hsien S, Lin S (1999) Clinical application of ultrasonography for detection of septic arthritis in children. Kaohsiung J Med Sci 15:542–549

    Google Scholar 

  49. Mah ET, GW LQ, Gent RJ, Paterson DC (1994) Ultrasonic features of acute osteomyelitis in children. J Bone Joint Surg Br 76:969–974

    CAS  PubMed  Google Scholar 

  50. Cardinol E, Bureau NJ, Aubin B, Chhem RK (2001) Role of ultrasound in musculoskeletal infections. Radiol Clin North Am 39:191–200

    Article  Google Scholar 

  51. Tumeh SS, Aliabadi P, Seltzer SE et al (1988) Chronic osteomyelitis: the relative role of plain radiographs and transmission computed tomography. Clin Nucl Med 13:710

    Article  CAS  PubMed  Google Scholar 

  52. Termaat MF, Raijmakers PG, Scholten HJ et al (2005) The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am 87:2464–2471

    CAS  PubMed  Google Scholar 

  53. Beltran J, Campanini DS, Knight C et al (1990) The diabetic foot: Magnetic Resonance Imaging evaluation. Skeletal Radiol 19:37–41

    Article  CAS  PubMed  Google Scholar 

  54. Mason MD, Zlatkin MB, Esterhai JL et al (1989) Chronic complicated osteomyelitis of the lower extremity: evaluation with MR imaging. Radiology 173:355–359

    Article  CAS  PubMed  Google Scholar 

  55. Meyers P, Wiener S (1991) Diagnosis of hematogenous pyogenic vertebral osteomyelitis by magnetic resonance imaging. Arch Intern Med 151:683–687

    Article  CAS  PubMed  Google Scholar 

  56. Moore JE, Yuh WTC, Kathol MH et al (1991) Abnormalities of the foot in patients with diabetes mellitus: findings on MR imaging. AJR 157:813–816

    Article  CAS  PubMed  Google Scholar 

  57. Tang JSH, Gold RH, Bassett LW et al (1988) Musculoskeletal infection of the extremities: evaluation with MR imaging. Radiology 166:205–209

    Article  CAS  PubMed  Google Scholar 

  58. Demirev A, Weijers R, Geurts J et al (2014) Comparison of [18 F]FDG PET/CT and MRI in the diagnosis of active osteomyelitis. Skeletal Radiol 43:665

    Article  PubMed  Google Scholar 

  59. Agarwal A, Aggarwal AN (2016) Bone and joint infections in children: acute hematogenous osteomyelitis. Indian J Pediatr 83:817–824

    Article  PubMed  Google Scholar 

  60. Elgazzar AH (2015) Pathophysiologic basis of nuclear medicie, 3rd edn. Springer, Berlin

    Google Scholar 

  61. Berquist TH, Brown ML, Fitzgerald RH et al (1985) Magnetic resonance imaging: application in musculoskeletal infection. Magn Reson Imaging 3:219–230

    Article  CAS  PubMed  Google Scholar 

  62. Peltola H, Pääkkönen M (2014) Acute osteomyelitis in children. N Engl J Med 370:352–360

    Article  CAS  PubMed  Google Scholar 

  63. Sfakianakis GN, Al-Sheikh W, Heal A et al (1982) Comparison of scintigraphy with In-111 leukocytes and Ga-67 in the diagnosis of occult sepsis. J Nucl Med 23:618–626

    CAS  PubMed  Google Scholar 

  64. Bitar RA, Scheffel U, Murphy PA, Bartlett JG (1986) Accumulation of In-111 labeled neutrophils and gallium-67 citrate in rabbit abscesses. J Nucl Med 27:1883–1889

    CAS  PubMed  Google Scholar 

  65. Sciuk J, Brandau W, Vollet B et al (1991) Comparison of technetium-99m polyclonal human immunoglobulin and technetium-99m monoclonal antibodies for imaging chronic osteomyelitis. Eur J Nucl Med 18:401–407

    Article  CAS  PubMed  Google Scholar 

  66. Duarte RM, Vaccaro AR (2013) Spinal infection: state of the art and management algorithm. Eur Spine J 22:2787–2799

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tins BJ, Cassar-Pullicino VN (2004) MR imaging of spinal infection. Semin Musculoskelet Radiol 8:215–229

    Article  PubMed  Google Scholar 

  68. Kylanpaa-Back ML, Suominem RA, Salo SA, Soiva M, Korkala OL, Mokka RE (1999) Postoperative discitis: outcome and late magnetic resonance image evaluation of ten patients. Ann Chir Gynaecol 88:61–64

    CAS  PubMed  Google Scholar 

  69. McAfee JG, Subramanian G, Gagne G (1984) Technique of leukocyte harvesting and labeling: Problems and prospectives. Semin Nucl Med 14:83–106

    Article  CAS  PubMed  Google Scholar 

  70. Peters AM (1994) The utility of Tc-99m HMPAO leukocytes for imaging infection. Semin Nucl Med 24:110–127

    Article  CAS  PubMed  Google Scholar 

  71. Datz FL (1994) Indium-111 labeled leukocytes for the detection of infection: current status. Semin Nucl Med 24:92–109

    Article  CAS  PubMed  Google Scholar 

  72. Schauwecker DS (1992) The scintigraphic diagnosis of osteomyelitis. AJR 158:9–18

    Article  CAS  PubMed  Google Scholar 

  73. Rubin RH, Fischman AJ, Callahan JR et al (1989) Indium-111 labeled non-specific immunoglobulin scanning in the detection of focal infection. N Engl J Med 321:935–940

    Article  CAS  PubMed  Google Scholar 

  74. Buscombe JR, Lui D, Ensing G et al (1990) Tc-99m-human immunoglobulin (HIG) – first results of a new agent for the localization of infection and inflammation. Eur J Nucl Med 16:649–655

    Article  CAS  PubMed  Google Scholar 

  75. Dominguez-Gadea L, Martin-Curto LM, Diez L et al (1993) Scintigraphic findings in Tc-99m antigranulocyte monoclonal antibody imaging of vertebral osteomyelitis. Eur J Nucl Med 20:940. (abstract)

    Google Scholar 

  76. Fischman AJ, Rubin RH, Khaw BA et al (1988) Detection of acute inflammation with In-111 labeled non-specific polyclonal IgG. Semin Nucl Med 18:335–344

    Article  CAS  PubMed  Google Scholar 

  77. Glaubitt D, Függe K, Witt U, Schäfer E (1993) Clinical value of delayed images in immunoscintigraphy using I-123 labeled monoclonal antigranulocyte antibodies in infection. Eur J Nucl Med 20:941. (abstract)

    Google Scholar 

  78. Lind P, Langsteger W, Koltringer P et al (1990) Immunoscintigraphy of inflammatory processes wtih a technetium-99m labeled monoclonal antigranulocyte antibody (MAb BW 250tl83). J Nucl Med 31:417–423

    CAS  PubMed  Google Scholar 

  79. Oyen WJG, Claessens RAMJ, VanHorn JR et al (1990) Scintigraphic detection of bone and joint infections with indium-111 labeled nonspecific polyclonal human immunoglobulin G. J Nucl Med 31:403–412

    CAS  PubMed  Google Scholar 

  80. Oyen WJG, Netten PM, Lemmens JAM et al (1992) Evaluation of infectious diabetic foot complications with indium-111 labeled human nonspecific immunoglobulin G. J Nucl Med 33:1330–1336

    CAS  PubMed  Google Scholar 

  81. Rubin RH, Young LS, Hansen WP et al (1988) Specific and non-specific imaging of localized Fisher immunotype 1 and Pseudomonas Aeruginosa infection with radiolabeled monoclonal antibody. J Nucl Med 29:651–656

    CAS  PubMed  Google Scholar 

  82. Serafini A, Alavi A, Tumeh S et al (1993) Multicenter phase II trial of In-DTPA-IgG. Eur J Nucl Med 20:825

    Google Scholar 

  83. Oyen WJG, VanHorn JR, Claessens RAMJ, Slooff JJH, van der Meer JWM, Corstens HM (1992) Diagnosis of bone, joint and joint prosthesis infections with In-111 labeled nonspecific human immunoglobulin G scintigraphy. Radiology 182:195–199

    Article  CAS  PubMed  Google Scholar 

  84. Rubin RH, Fischman AJ, Needleman M et al (1989) Radiolabeled, non-specific polyclonal human immunoglobulin in the detection of focal inflammation by scintigraphy: comparison with gallium-67 citrate and technetium-99m-labeled albumin. J Nucl Med 30:385–389

    CAS  PubMed  Google Scholar 

  85. Reuland P, Winker KH, Heuchert T, Ruck P, Muller-Schuenburg W, Weller S, Feine U (1991) Detection of infection in post-operative orthopedic patients with Tc-99m labeled monoclonal antibodies against granulocytes. J Nucl Med 32:2209–2214

    CAS  PubMed  Google Scholar 

  86. Kaim A, Maurer T, Ochsner P, Jundt G, Kirsch E, Muller-Brand J (1997) Chronic complicated osteomyelitis of the appendicular skeleton: diagnosis with technetium-99m labeled monoclonal antigranulocyte antibody-immunoscintigraphy. Eur J Nucl Med 24:732–738

    CAS  PubMed  Google Scholar 

  87. Rubin RH, Fischman AJ (1996) Radionuclide imaging of infection in the immunocompromised host. Clin Infect Dis 22:414–422

    Article  CAS  PubMed  Google Scholar 

  88. Van der Laken CJ, Boerman OC, Oyen WJG, van den Ven MTP, Edwards DS, Barrett JA, van der Meer JWM, Corsten FHM (1997) Technetium-99m labeled chemotactic peptides in acute infection and sterile inflammation. J Nucl Med 38:1310–1315

    PubMed  Google Scholar 

  89. Babich JW, Tompkins RG, Graham W, Barrow SA, Fischman AJ (1997) Localization of radiolabeled chemotactic peptide at focal sites of Escherichia coli infection in rabbits: evidence for a receptor specific mechanism. J Nucl Med 38:1316–1322

    CAS  PubMed  Google Scholar 

  90. Vallabhajosula S (1997) Tc-99m labeled chemotactic peptides: specific for imaging infection. JNM 38:1322–1326

    CAS  PubMed  Google Scholar 

  91. Morgan JR, Williams LA, Howard CB (1985) Technetium labeled liposome imaging for deep seated infection. Br J Radiol 58:35–39

    Article  CAS  PubMed  Google Scholar 

  92. O’Sullivan MM, Powell N, French AP, Williams KE, Morgan JR, Williams BD (1988) Inflammatory joint disease: a comparison of liposome scanning, bone scanning and radiography. Ann Rheum Dis 47:485–491

    Article  PubMed  PubMed Central  Google Scholar 

  93. Williams BD, O’Sullivan M, Saggu GS, Wiliams KE, Williams LA, Morgan JR (1987) Synovial accumulation of technetium labeled liposomes in rheumatoid arthritis. Ann Rheum Dis 46:314–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Love WG, Amos N, Kellaway IW, Williams BD (1990) Specific accumulation of cholesterol-rich liposomes in the inflammatory tissue in rats with adjuvant arthritis. Ann Rheum Dis 49:611–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boerman OC, Storm G, Oyen WJG, van Bloois L, van der Meer JM (1995) Sterically stabilized liposomes labeled with In-111 to image focal infection. J Nucl Med 36:1639–1644

    CAS  PubMed  Google Scholar 

  96. Matthies A, Hickeson M, Cuchiara A, Alavi A (2002) Dual time point F-18 FDG for the evaluation of pulmonary nodules. J Nucl Med 43:871–875

    PubMed  Google Scholar 

  97. Handmaker H, Leonards R (1976) The bone scan in inflammatory osseous disease. Semin Nucl Med 6:95–105

    Article  CAS  PubMed  Google Scholar 

  98. Alazraki N, Dries D, Datz F et al (1985) Value of a 24 hour image (four phase bone scan) in assessing osteomyelitis in patients with peripheral vascular disease. J Nucl Med 26:711–717

    CAS  PubMed  Google Scholar 

  99. Israel O, Gips S, Jerushalmi J et al (1987) Osteomyelitis and soft tissue infection: differential diagnosis with 24 hour/4 hour ratio of Tc-99m MDP uptake. Radiology 163:725–726

    Article  CAS  PubMed  Google Scholar 

  100. Connolly LP, Treves ST, Davies RT, Zimmerman RE (1999) Pediatric application of pinhole magnification imaging. J Nucl Med 40:1896–1901

    CAS  PubMed  Google Scholar 

  101. Bihl H, Rossler B, Borr U (1992) Assessment of infectious conditions in the musculoskeletal system: experience with Tc-99m HIG in 120 patients. J Nucl Med 33:839

    Google Scholar 

  102. Gilday DL, Paul DJ, Paterson J (1975) Diagnosis of osteomyelitis in children by combined blood pool and bone imaging. Radiology 117:331–335

    Article  CAS  PubMed  Google Scholar 

  103. Howie DW, Savage JP, Wilson TG et al (1983) The technetium phosphate bone scan in the diagnosis of osteomyelitis in childhood. J Bone Joint Surg 65A:431–437

    Article  Google Scholar 

  104. Kolyvas E, Rosenthall L, Ahronheim GA et al (1978) Serial Ga-67 citrate imaging during treatment of acute osteomyelitis in childhood. Clin Nucl Med 3:461–466

    Article  CAS  PubMed  Google Scholar 

  105. Lisbona R, Rosenthall L (1977) Observations on sequential use of Tc-99m phosphate complex and Ga-67 imaging in osteomyelitis, cellulitis and septic arthritis. Radiology 123:123–129

    Article  Google Scholar 

  106. Majd M, Frankel RS (1976) Radionuclide imaging in skeletal inflammatory and ischemic disease in children. AJR 126:832–841

    Article  CAS  PubMed  Google Scholar 

  107. Maurer AH, Chen DC, Camargo EE et al (1981) Utility of three phase skeletal scintigraphy in suspected osteomyelitis: concise communications. J Nucl Med 22:941–949

    CAS  PubMed  Google Scholar 

  108. Schauwecker DS (1992) The scintigraphic diagnosis of osteomyelitis. AJR 158:9–18

    Article  CAS  PubMed  Google Scholar 

  109. Connolly LP, Connolly SA, Drubach LA, Jaramillo D, Treves ST (2002) Acute hematogenous osteomyelitis of children: assessment of skeletal scintigraphy-based diagnosis in the era of MRI. J Nucl Med 43:1310–1316

    PubMed  Google Scholar 

  110. Tuson GE, Hoffman EB, Mann MD (1994) Isotope bone scanning for acute osteomyelitis and septic arthritis in children. J Bone Joint Surg Br 76B:306–310

    Google Scholar 

  111. Handmaker H, Giammona ST (1984) Improved early diagnosis of acute inflammatory skeletal-articular diseases in children: a two radiopharmaceutical approach. Pediatrics 73:661–669

    CAS  PubMed  Google Scholar 

  112. Sfakianakis GN, Scoles P, Welch M et al (1978) Evolution of the bone imaging findings in osteomyelitis. J Nucl Med 19:706

    Google Scholar 

  113. Pennington WT, Mott MP, Thometz JG, Sty JR, Metz D (1999) Photopenic bone scan osteomyelitis: a clinical perspective. J Pediare Orthop 19:695–698

    CAS  Google Scholar 

  114. Demopulos GA, Black EE, McDougall R (1988) Role of radionuclide imaging in the diagnosis of acute osteomyelitis. J Pediatr Orthop 8:558–565

    Article  CAS  PubMed  Google Scholar 

  115. Fleisher GR, Paradise TE, Plottin SA, Borden S (1980) Falsely normal radionuclide scans for osteomyelitis. Am J Dis Child 134:499–502

    CAS  PubMed  Google Scholar 

  116. Rinsky L, Goris ML, Schurman DJ et al (1977) Technetium bone scanning in experimental osteomyelitis. Clin Orthop 128:361–366

    Google Scholar 

  117. Sullivan DC, Rosenfield NS, Ogden J et al (1980) Problems in the scintigraphic detection of osteomyelitis in children. Radiology 135:731–736

    Article  CAS  PubMed  Google Scholar 

  118. Wald ER, Mirror R, Gartner JC (1980) Pitfalls in the diagnosis of acute osteomyelitis by bone scan. Clin Pediatr 19:597–600

    Article  CAS  Google Scholar 

  119. Al-Sheikh W, Sfakianakis GN, Mnaymneh W et al (1985) Subacute and chronic bone infections: diagnosis using In-111, Ga-67 and Tc-99m MDP bone scintigraphy and radiography. Radiology 155:501–506

    Article  CAS  PubMed  Google Scholar 

  120. Hadjipavlou A, Lisbona R, Rosenthall L (1983) Difficulty of diagnosing infected hypertrophic pseudoarthrosis by radionuclide imaging. Clin Nucl Med 8:45–49

    Article  CAS  PubMed  Google Scholar 

  121. Ivanovic V, Dodig D, Livakovic M et al (1990) Comparison of three phase bone scan, three phase Tc-99m HMPAO leukocyte scan and gallium-67 scan in chronic bone infection. Prog Clin Biol Res 355:189–198

    Google Scholar 

  122. Keenan AM, Tindel NL, Alavi A (1989) Diagnosis of pedal osteomyelitis in diabetic patients using current scintigraphic techniques. Arch Intern Med 149:2262–2266

    Article  CAS  PubMed  Google Scholar 

  123. Larcos G, Brown ML, Sutton RT (1991) Diagnosis of osteomyelitis of the foot in diabetic patients: value of In-111 leukocyte scintigraphy. AJR 157:527–531

    Article  CAS  PubMed  Google Scholar 

  124. Lewin JS, Rosenfield NS, Hoffer PB et al (1986) Acute osteomyelitis in children: combined Tc-99m and Ga-67 imaging. Radiology 158:795–804

    Article  CAS  PubMed  Google Scholar 

  125. Magnuson JE, Brown ML, Mauser MF et al (1988) In-111 labeled leukocyte scintigraphy in suspected orthopedic prosthesis infection: comparison with other modalities. Radiology 168:235–239

    Article  CAS  PubMed  Google Scholar 

  126. Maurer AH, Millmond SH, Knight LC et al (1986) Infection in diabetic osteoarthropathy: use of indium-labeled leukocytes for diagnosis. Radiology 161:221–225

    Article  CAS  PubMed  Google Scholar 

  127. Modic MT, Pflanze W, Feiglin DH et al (1986) Magnetic resonance imaging of musculoskeletal infections. Radiol Clin North Am 24:247–258

    CAS  PubMed  Google Scholar 

  128. Newman LG, Waller J, Palestro CJ et al (1991) Unsuspected osteomyelitis in diabetic foot ulcers: diagnosis and monitoring by leukocyte scanning with In-111 oxyquinoline. JAMA 266:1246–1251

    Article  CAS  PubMed  Google Scholar 

  129. Park HM, Wheat LJ, Siddiqui AR et al (1982) Scintigraphic evaluation of diabetic osteomyelitis: concise communication. J Nucl Med 23:569–573

    CAS  PubMed  Google Scholar 

  130. Ruther W, Hotze A, Moller F et al (1990) Diagnosis of bone and joint infection by leukocyte scintigraphy: a comparative study with Tc-99m HMPAO labeled leukocytes, Tc-99m labeled antigranulocyte antibodies and Tc-99m labeled nanocolloid. Arch Orthop Trauma Surg 110:26–32

    Article  CAS  PubMed  Google Scholar 

  131. Schauwecker DS, Park HM, Mock BH et al (1984) Evaluation of complicating osteomyelitis with Tc-99m MDP, In-111 granulocytes and Ga-67 citrate. J Nucl Med 25:849–853

    CAS  PubMed  Google Scholar 

  132. Splittgerber GF, Spiegelhoff DR, Buggy BP (1989) Combined leukocyte and bone imaging used to evaluate diabetic osteoarthropathy and osteomyelitis. Clin Nucl Med 14:156–160

    Article  CAS  PubMed  Google Scholar 

  133. Sugarman B (1987) Pressure sores and underlying bone infection. Arch Intern Med 147:553–555

    Article  CAS  PubMed  Google Scholar 

  134. Unger E, Moldofsky P, Gatenby R et al (1988) Diagnosis of osteomyelitis by MR imaging. AJR 150:605–610

    Article  CAS  PubMed  Google Scholar 

  135. Seldin DW, Heiken JP, Feldman F et al (1985) Effect of soft tissue pathology on detection of pedal osteomyelitis in diabetics. J Nucl Med 26:988–993

    CAS  PubMed  Google Scholar 

  136. Scoles PV, Hilty MD, Sfakianakis GN (1980) Bone scan patterns in acute osteomyelitis. Clin Orthop 153:210–217

    Google Scholar 

  137. Namey TC, Halla JT (1978) Radiographic and nucleographic techniques. Clin Rheum Dis 4:95–132

    Google Scholar 

  138. Deysine M, Rafkin H, Teicher I et al (1975) The detection of acute experimental osteomyelitis with gallium-67 citrate scanning. Surg Gynecol Obstet 141:40–42

    CAS  PubMed  Google Scholar 

  139. Rosenthall L, Kloiber R, Damtew B et al (1982) Sequential use of radiophosphate and radiogallium imaging in the differential diagnosis of bone, joint and soft tissue infection: quantitative analysis. Diagn Imaging 51:249–258

    CAS  PubMed  Google Scholar 

  140. Tumeh SS, Aliabadi P, Weissman BN et al (1986) Chronic osteomyelitis: bone and gallium scan patterns associated with active disease. Radiology 158:685–688

    Article  CAS  PubMed  Google Scholar 

  141. Knight D, Gary HW, Bessent RG (1988) Imaging for infection: caution required with the Charcot joint. Eur J Nucl Med 13:523–526

    Article  CAS  PubMed  Google Scholar 

  142. Seabald JE, Nepola JV, Conrad GR et al (1989) Detection of osteomyelitis at fracture nonunion sites: comparison of two scintigraphic methods. AJR 152:1021–1027

    Article  Google Scholar 

  143. Modic M, Feiglin DH, Piraino DW et al (1985) Vertebral osteomyelitis: assessment using MR. Radiology 57:157–166

    Article  Google Scholar 

  144. Love C, Petel M, Lonner BS, Tomas MB, Palestro CJ (2000) Diagnosing spinal osteomyelitis: a comparison of bone and Ga-67 scintigraphy and magnetic resonance imaging. Clin Nucl Med 25:963–977

    Article  CAS  PubMed  Google Scholar 

  145. Kolindou A, Liu Y, Ozker K, Krasnow A, Isitman AT, Hellman RS, Collier BD (1996) In-11 WBC imaging of osteomyelitis in patients with underlying bone scan abnormalities. Clin Nucl Med 21:183–191

    Article  CAS  PubMed  Google Scholar 

  146. McCarthy K, Velchik MG, Alavi A et al (1988) Indium-111-labeled white blood cells in the detection of osteomyelitis complicated by a preexisting condition. J Nucl Med 29:1015–1021

    CAS  PubMed  Google Scholar 

  147. Lewis VL, Bailey MH, Pulawski G et al (1988) The diagnosis of osteomyelitis in patients with pressure sores. Plast Reconstr Surg 81:229–232

    Article  PubMed  Google Scholar 

  148. Borman TR, Johnson RA, Sherman FC (1986) Gallium scintigraphy for the diagnosis of septic arthritis and osteomyelitis in children. J Pediatr Orthop 6:317–325

    Article  CAS  PubMed  Google Scholar 

  149. Seabald JE, Ferlic RJ, Marsh JL et al (1993) Periarticular bone sites associated with traumatic injury: false-positive findings with In-111 labeled white blood cells and Tc-99m MDP scintigraphy. Radiology 186:845–849

    Article  Google Scholar 

  150. Schauwecker DS (1989) Osteomyelitis: diagnosis with indium-111 labeled leukocytes. Radiology 171:141–146

    Article  CAS  PubMed  Google Scholar 

  151. Ezuddin S, Yuille D, Spiegelhoff D (1992) The role of dual bone and WBC scan imaging in the evaluation of osteomyelitis and cellulitis using both planar and SPECT imaging. J Nucl Med 33:839

    Google Scholar 

  152. Roddie ME, Peters AM, Danpure HJ et al (1988) Inflammation: imaging with Tc-99m-HMPAO-labeled leukocytes. Radiology 166:767–772

    Article  CAS  PubMed  Google Scholar 

  153. Verlooy H, Mortelmans L, Verbruggen A et al (1990) Tc-99m HMPAO labeled leukocyte scanning for detection of infection in orthopedic surgery. Prog Clin Biol Res 355:181–187

    CAS  PubMed  Google Scholar 

  154. Vorne M, Lantto S, Paakkinen S, Salo S, Soini I (1989) Clinical comparison of Tc-99m-HMPAO labeled leukocytes and Tc-99m nanocolloid in the detection of inflammation. Acta Radiol 30:633–637

    Article  CAS  PubMed  Google Scholar 

  155. Erda PA, Glaudemans A, Veltman NC, Sollini M, Pacilio M et al (2014) Image acquisition and interpretation criteria for tc99m HMPAO-labelled white blood cell scintigraphy: results of a multicentre study. Eur J Nucl Med Mol Imaging 41:615–623

    Article  Google Scholar 

  156. Glaudemans A, de Vries E, Vermeulen L, Slart R, Dierckx R et al (2013) A large retrospective single center study to define the best image acquisition protocols and interpretation criteria for white blood cell scintigraphy with tc99m HMPAO-labelled leucocytes in musculoskeletal infections. Eur J Nucl Med Mol Imaging 40:1760–1769

    Article  PubMed  Google Scholar 

  157. Hakki S, Harwood SJ, Morrissey MA et al (1997) Comparative study of monoclonal antibody scan in diagnosing orthopedic infection. Clin Orthop 335:275–285

    Google Scholar 

  158. Harwood SJ, Valsivia S, Hung GL et al (1999) Use of Saluesomab, a radiolabeled antibody fragment to detect osteomyelitis in diabetic patients with foot ulcers by leucoscintigraphy. Clin Infect Dis 28:1200–1205

    Article  CAS  PubMed  Google Scholar 

  159. Devillers A, Garin E, Polard JL, Poirier JY, Arvieux C, Girault S, Moisan A, Bouruet P (2000) Comparison of Tc-99m-labeled antileukocyte fragments Fab’ and Tc-99m-HMPAO-labeled leukocyte (HMPAO-LS) scintigraphy in the diagnosis of bone and joint infections: a prospective study. Nucl Med Commun 21:747–753

    Article  CAS  PubMed  Google Scholar 

  160. Ryan PJ (2002) Leukoscan for orthopaedic imaging in clinical practice. Nucl Med Commun 23:707–714

    Article  PubMed  Google Scholar 

  161. Palestro CJ, Caprioli R, Love C, Richardson HL, Kipper SL, Weiland FL, Thomas MB (2003) Rapid diagnosis of pedal osteomyelitis in diabetics with technetium-99m labeled monoclonal antigraulocyte antibody. J Foot Ankle Surg 42:2–8

    Article  PubMed  Google Scholar 

  162. Rothenberg TV, Schaffstein J, Ludwig J, Vehling D, Koster O, Schmid G (2003) Imaging osteomyletis with Tc99m-labeled antigranulocyte antibody Fab Fragements. Clin Nucl Med 28:643–647

    Google Scholar 

  163. Gratz S, Braun HG, Behr TM et al (1997) Photopenia in chronic vertebral osteomyelitis with technetium 99m antigranulocyte antibody. J Nucl Med 38:211–216

    CAS  PubMed  Google Scholar 

  164. Palestro CP, Glaudemans AW, Dierckx RA (2013) Multiagent imaging of inflammation and infection. Clin Transl Imaging 1:385–396

    Article  Google Scholar 

  165. Lazzeri E, Pauwels EK, Erba P et al (2004) Clinical feasibility of two-step streptavidin/111In-biotin scintigraphy in patients with suspected vertebral osteomyelitis. Eur J Nucl Med Mol Imaging 31:1505–1511

    Article  PubMed  Google Scholar 

  166. Brudin LH, Valind SO, Rhodes CG et al (1994) Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography. Eur J Nucl Med 21:297–305

    Article  CAS  PubMed  Google Scholar 

  167. Sugawara Y, Gutowski TD, Fischer SJ et al (1999) Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine, L-methionine, Ga-67-citrate and I-125 HAS. Eur J Nucl Med 26:333–341

    Article  CAS  PubMed  Google Scholar 

  168. Kalicke T, Schmitz A, Risse JH et al (2000) Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histopathologically confirmed cases. Eur J Nucl Med 27:524–528

    Article  CAS  PubMed  Google Scholar 

  169. Guhlmann A, Brecht-Krauss D, Sugar G, Glatting G, Kotzerke J, Kinzi L, Reske SN (1998) Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology 206:749–753

    Article  CAS  PubMed  Google Scholar 

  170. Guhlman A, Brecht-Kraus D, Sugar G et al (1998) Fluorine-18-FDG PET and technitium-99m antigranulocyte antibody in chronic osteomyelitis. J Nucl Med 39:2145–2152

    Google Scholar 

  171. Zhuang HM, Duarte PS, Poudehnad M et al (2000) The exclusion chronic osteomyelitis with F-18 fluorodeoxyglucose positron tomography imaging. Clin Nucl Med 25:281–284

    Article  CAS  PubMed  Google Scholar 

  172. De Winter F, Dierckx R, de Bondt P et al (2000) FDG PET as a single technique is more accurate than the combination bone scan/white blood cell scan in chronic orthopedic infection (COI). J Nucl Med 41:59. (abstract)

    Google Scholar 

  173. De Winter F, Van de Wiele C, Vandenberghe S, de Bondt P, de Clercq D, D’Asseler Y, Dierckx R (2001) Coincidence camera FDG for the diagnosis of chronic orthopedic infections: a feasibility study. J Comput Assist Tomogr 25:184–189

    Article  PubMed  Google Scholar 

  174. Stumpe KD, Strobel K (2006) 18 F FDG-PET imaging in musculoskeletal infection. Q J Nucl Med Mol Imaging 50:131–142

    CAS  PubMed  Google Scholar 

  175. Santiago-Restrepo C, Giménez CR, McCarthy K (2003) Imaging of osteomyelitis and musculoskeletal soft tissue infections: current concepts. Rheum Dis Clin North Am 29:89–109

    Article  CAS  PubMed  Google Scholar 

  176. Palestro J (2013) FDG-PET in musculoskeletal infections. Semin Nucl Med 43:367–376

    Article  PubMed  Google Scholar 

  177. Stumpe SK, Stumpe KDM (2007) PET/CT in musculoskeletal infections. Semin Musculoskelet Radiol 83:1357–1368

    Google Scholar 

  178. Kumar V, Boddeti DK (2013) (68)Ga-radiopharmaceuticals for PET imaging of infection and inflammation. Recent Results Cancer Res 194:189–219

    Article  CAS  PubMed  Google Scholar 

  179. Rastogi A, Bhattacharya A, Prakash M, Sharma S, Mittal BR, Khandelwal N, Bhansali A (2016) Utility of PET/CT with fluorine-18-fluorodeoxyglucose-labeled autologous leukocytes for diagnosing diabetic foot osteomyelitis in patients with Charcot’s neuroarthropathy. Nucl Med Commun 37(12):1253–1259

    Article  CAS  PubMed  Google Scholar 

  180. Dumarey N, Egrise D, Blocklet D, Stallenberg B, Remmelink M, del Marmol V, Van Simaeys G, Jacobs F, Goldman S (2006) Imaging infection with 18F-FDG-labeled leukocyte PET/CT: initial experience in 21 patients. J Nucl Med 47(4):625–632

    PubMed  Google Scholar 

  181. Freesmeyer M, Stecker FF, Schierz JH, Hofmann GO, Winkens T (2014) First experience with early dynamic (18)F-NaF-PET/CT in patients with chronic osteomyelitis. Ann Nucl Med 28(4):314–321

    Article  CAS  PubMed  Google Scholar 

  182. Diaz LA, Foss CA, Thornton K et al (2007) Imaging of musculoskeletal bacterial infections by 124 FIAU-PET/CT. PLoS One 10:e1007

    Article  CAS  Google Scholar 

  183. Jødal L, Nielsen OL, Afzelius P, Alstrup AK, Hansen SB (2017) Blood perfusion in osteomyelitis studied with [(15)O] water PET in a juvenile porcine model. EJNMMI Res 7(1):4. doi:10.1186/s13550-016-0251-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Palestro CJ (2015) Radionuclide imaging of osteomyelitis. Semin Nucl Med 45:32–46

    Article  PubMed  Google Scholar 

  185. Tailji S, Yacoub TY, Abdella N, Albunni A, Mahmoud A, Doza B, Loutfi I, Al-Za’abi K, Heiba S, Elgazzar A (1999) Optimization of simultaneous dual In-111 labeled leukocytes and Tc-99m MDP bone scans in diabetic foot (abstract). Eur J Nucl Med 26:1201

    Google Scholar 

  186. Vesco L, Boulahdour H, Hamissa S, Kretz S, Montazel J, Perlemuter L, Meignan M, Rahmouni A (1999) The value of combined radionuclide and magnetic resonance imaging in the diagnosis and conservative management of minimal or localized osteomyelitis of the foot in diabetes mellitus. Metabolism 48:922–927

    Article  CAS  PubMed  Google Scholar 

  187. Palestro CJ, Mehta HH, Patel M, Freeman SJ, Harrington WN, Tomas MB, Marwin SE (1998) Marrow versus infection in Charcot joint: Indium-111 leukocyte and technetium 99m sulfur colloid scintigraphy. JNM 39:349–350

    Google Scholar 

  188. Kaim A, Ledermann HP, Bongartz G, Messmer P, Muller-Brand J, Steinbrich W (2000) Chronic post-traumatic osteomyelitis of the lower extremity: comparison of magnetic resonsnce imaging and combined bone scintigraphy/immunoscintigraphy with radiolabelled monoclonal antigranulocyte antibodies. Skeletal Radiol 29:378–386

    Article  CAS  PubMed  Google Scholar 

  189. Mandell GA (1996) Imaging in the diagnosis of musculoskeletal infections in children. Curr Probl Pediatr 26:218–237

    Article  CAS  PubMed  Google Scholar 

  190. Greenwald L, Fajman W (1982) Utility of gallium scans in differentiating osteomyelitis from infection in sickle cell patients. Clin Nucl Med 7:71. (abstract)

    Article  Google Scholar 

  191. Palestro CJ, Torres MA (1997) Radionuclide imaging in orthopedic infections. Semin Nucl Med 27:334–345

    Article  CAS  PubMed  Google Scholar 

  192. Palestro CJ, Love C (2009) Nuclear Medicine and diabetic foot infections. Semin Nucl Med 39:52–65

    Article  PubMed  Google Scholar 

  193. Grerand S, Dolan M, Laing P, Bird M, Smith ML, Klenerman L (1996) Diagnosis of osteomyelitis in neuropathic foot ulcers. J Bone Joint Surg Br 78-B:51–55

    Google Scholar 

  194. Heiba S, Kolker D, Ong L, Sharma S, Travis A, Teodorescu V, Ellozy S, Kostakoglu L, Savitch I, Machac J (2013) Dual-isotope SPECT/CT impact on hospitalized patients with suspected diabetic foot infection: saving limbs, lives, and resources. Nucl Med Commun 34:877–884

    PubMed  Google Scholar 

  195. Filippi L, Uccioli L, Giurato L, Schillaci O (2009) Diabetic foot infection: usefulness of SPECT/CT for 99mTc-HMPAO-labeled leukocyte imaging. J Nucl Med 50(7):1042–1046

    Article  PubMed  Google Scholar 

  196. Erdman WA, Buethe J, Bhore R, Ghayee HK, Thompson C, Maewal P, Anderson J, Klemow S, Oz OK (2012) Indexing severity of diabetic foot infection with 99mTc-WBC SPECT/CT hybrid imaging. Diabetes Care 35:1826–1831

    Article  PubMed  PubMed Central  Google Scholar 

  197. Palestro CJ, Love C, Tronco GG, Tomas MB, Rini JN (2006) Combined labeled leukocyte and technetium 99m sulfur colloid bone marrow imaging for diagnosing musculoskeletal infection 1. Radiographics 26:859–870

    Article  PubMed  Google Scholar 

  198. Cervo M, Gerbaudo VH, Park MA, Moore SC (2013) Quantitative simultaneous 111In∕99mTc SPECT-CT of osteomyelitis. Med Phys 40:08250

    Article  CAS  Google Scholar 

  199. van der Bruggen W, Bleeker-Rovers CP, Boerman OC, Gotthardt M, Oyen WJG (2010) PET and SPECT in Osteomyelitis and Prosthetic Bone and Joint Infections: A Systematic Review. Semin Nucl Med 40:3–15

    Article  PubMed  Google Scholar 

  200. Newman LG, Waller J, Palestro CJ, Hermann G, Klein MJ, Schwatrz M, Harrington E et al (1992) Leukocyte scanning with 111-In is superior to magnetic resonance imaging in diagnosis of clinically unsuspected osteomyelitis in diabetic foot ulcers. Diabetes Care 15:1527–1530

    Article  CAS  PubMed  Google Scholar 

  201. Cook TA, Rahim N, Simpson HC, Galland RB (1996) Magnetic resonance imaging in the management of diabetic foot infection. Br J Surg 83:245–248

    Article  CAS  PubMed  Google Scholar 

  202. Morrison W, Schweitzer ME, Wapner KL, Hecht PJ, Gannon FH, Behm WR (1995) Osteomyelitis in diabetics: clinical accuracy, surgical utility and cost effectiveness of MR imaging. Radiology 196:557–564

    Article  CAS  PubMed  Google Scholar 

  203. Eckman MH, Greenfield S, Mackey WC, Wong JB, Kaplan S, Sulivan L et al (1995) Foot infections in diabetic patients. JAMA 273:712–720

    Article  CAS  PubMed  Google Scholar 

  204. Nawaz A, Torigian DA, Siegelman ES, Basu S, Chryssikos T, Alavi A (2010) Diagnostic performance of FDG-PET, MRI, and plain film radiography (PFR) for the diagnosis of osteomyelitis in the diabetic foot. Mol Imaging Biol 12:33–42

    Article  Google Scholar 

  205. Kumar R, Basu S, Torigian D, Anand V, Zhuang H, Alavi A (2008) Role of modern imaging techniques for diagnosis of infection in the era of 18F-fluorodeoxyglucose positron emission tomography. Clin Microbiol Rev 21:209

    Article  PubMed  PubMed Central  Google Scholar 

  206. Basu S, Zhuang H, Alavi A (2007) Imaging of lower extremity artery atherosclerosis in diabetic foot: FDG-PET imaging and histo-pathological correlates. Clin Nucl Med 32:56–78

    Google Scholar 

  207. Keidar Z, Militianu D, Melamed E, Bar-Shalom R, Israel O (2005) The diabetic foot: initial experience with 18F-FDG PET/CT. J Nucl Med 46:44–49

    Google Scholar 

  208. Treglia G, Sadeghi R, Annunziata S, Zakavi SR, Caldarella C, Muoio B, Bertagna F, Ceriani L, Giovanella L (2013) Diagnostic performance of Fluorine-18-Fluorodeoxyglucose positron emission tomography for the diagnosis of osteomyelitis related to diabetic foot: a systematic review and a meta-analysis. Foot (Edinb). doi: 10.1016/j.foot.2013.07.002. pii: S0958–2592(13)00027–8

  209. Kagna O, Srour S, Melamed E, Militianu D, Keidar Z (2012) FDG PET/CT imaging in the diagnosis of osteomyelitis in the diabetic foot. Eur J Nucl Med Mol Imaging 39:1545–1550

    Article  PubMed  Google Scholar 

  210. Whalen IL, Brown ML, McLeod R et al (1991) Limitations of indium leukocyte imaging for the diagnosis of spine infections. Spine 16:193–197

    CAS  PubMed  Google Scholar 

  211. Cl P, Kim CK, Swyer A et al (1991) Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99m-methylene diphosphonate bone scintigraphy. J Nucl Med 32:1861–1865

    Google Scholar 

  212. Fernandez-Ulloa M, Pl V, Hanslits MJ et al (1985) Vertebral osteomyelitis imaging with In-111 labeled white blood cells and Tc-99m bone scintigrams. Orthopedics 8:1144–1150

    CAS  PubMed  Google Scholar 

  213. Hovi I (1996) Complicated bone and soft tissue infections: imaging with 0.1 MR and Tc99m HMPAO labeled leukocytes. Acta Radiol 37:870–876

    CAS  PubMed  Google Scholar 

  214. Gratz S, Dorner J, Oestmann JW, Opitz M, Behr T, Meller J, Grabbe E, Becker W (2000) Ga67-citrate and Tc-99m MDP for estimating the severity of vertebral osteomyelitis. Nucl Med Commun 21:111–120

    Article  CAS  PubMed  Google Scholar 

  215. Tamm AS (2017) Bone and Gallium Single-Photon Emission Computed Tomography-Computed Tomography is Equivalent to Magnetic Resonance Imaging in the Diagnosis of Infectious Spondylodiscitis: A Retrospective Study. Can J Radiol 68:41–46

    Article  Google Scholar 

  216. Prodromou ML, Ziakas OD, Poulou LS, Karsaliakos P, Thonos L et al (2013) FDG PET is a robust tool for the diagnosis of spondylodiscitis: a meta-analysis of diagnostic data. Clin Nucl Med 39:330–335

    Article  Google Scholar 

  217. Gratz S, Dorner J, Fischer U et al (2002) F-18-FDG hybrid PET in patients with suspected spondylitis. Eur J Nucl Med Mol Imaging 29:516–524

    Article  CAS  PubMed  Google Scholar 

  218. Stumpe KD, Zanetti M, Weishaupt D, Hodler J, Boos N et al (2002) FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. AJR 179:1151–1157

    Article  PubMed  Google Scholar 

  219. Palestro CJ (2016) Radionuclide imaging of musculoskeletal infection: a review. J Nucl Med 57:1406–1412

    Article  PubMed  Google Scholar 

  220. Seifen T, Rettenbacher L, Thaler C, Holzmannhofer J, Mc Coy M, Pirich C (2012) Prolonged back pain attributed to suspected spondylodiscitis: the value of 18F-FDG PET/CT imaging in the diagnostic work-up of patients. Nuklearmedizin 51:194–200

    Article  CAS  PubMed  Google Scholar 

  221. Fuster D, Tomás X, Mayoral M et al (2015) Prospective comparison of whole-body 18F-FDG PET/CT and MRI of the spine in the diagnosis of haematogenous spondylodiscitis. Eur J Nucl Med Mol Imaging 42:264–271

    Article  CAS  PubMed  Google Scholar 

  222. Ioannou S, Chatziioannou S, Pneumaticos SG, Zormpala A, Sipsas NV (2013) Fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography scan contributes to the diagnosis and management of brucellar spondylodiskitis. BMC Infect Dis 13:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Skanjeti A, Penna D, Douroukas A et al (2012) PET in the clinical work-up of patients with spondylodiscitis: a new tool for the clinician? Q J Nucl Med Mol Imaging 6:569–576

    Google Scholar 

  224. Nakahara M, Ito M, Hattori N et al (2015) 18F-FDG-PET/CT better localizes active spinal infection than MRI for successful minimally invasive surgery. Acta Radiol 56:829–836

    Article  PubMed  Google Scholar 

  225. Riccio SA, Chu AKM, Rabin HR, Kloiber R (2015) Fluorodeoxyglucose positron emission tomography/computed tomography interpretation criteria for assessment of antibiotic treatment response in pyogenic spine infection. Can Assoc Radiol J 66:145–152

    Article  PubMed  Google Scholar 

  226. Nanni C, Errani C, Boriani L et al (2010) 68Ga-Citrate PET/CT for evaluating patients with infections of the bone: preliminary results. J Nucl Med 51:1932–1936

    Article  PubMed  Google Scholar 

  227. Tumeh SS, Tohmeh AG (1991) Nuclear medicine techniques in septic arthritis and osteomyelitis. Rheum Dis Clin North Am 17:559–583

    CAS  PubMed  Google Scholar 

  228. Tehranzadeh J, Wong E, Wang F, Sadighpour M (2001) Imaging of osteomyelitis in the mature skeleton. Radiol Clin North Am 39:223–250

    Article  CAS  PubMed  Google Scholar 

  229. Erdman WA, Tamburro F, Jayson HT, Weatherall PT, Ferry KB, Peshoch RM (1991) Osteomyelitis: characteristics and pitfalls of diagnosis with MR imaging. Radiology 180:533–539

    Article  CAS  PubMed  Google Scholar 

  230. Prandini N, Lazzeri E, Rossi B, Erba P, Parisella MG, Signore A (2006) Nuclear Medicine imaging of bone infections. Nucl Med Commun 27:633–644

    Article  PubMed  Google Scholar 

  231. Utz JA, Lull RJ, Galvin EG (1986) Asymptomatic total hip prosthesis: natural history determined using 99mTc MDP bone scans. Radiology 161:509–512

    Article  CAS  PubMed  Google Scholar 

  232. Oswald SG, VanNostrand D, Savory CG, Callaghan JJ (1989) Three phase bone scan and indium white blood cell scintigraphy following porous-coated hip arthroplasty: a prospective study of the prosthetic hip. J Nucl Med 30:1321–1331

    CAS  PubMed  Google Scholar 

  233. Oswald SG, VanNostrand D, Savory CG, Anderson JH, Callghan JJ (1990) The acetabulum: a prospective study of three-phase bone and indium white blood cell scintigraphy following porous coated hip arthroplasty. J Nucl Med 31:274–280

    CAS  PubMed  Google Scholar 

  234. Rosenthall L, Lepanto L, Raymond F (1987) Radiophosphate uptake in asymptomatic knee arthroplasty. J Nucl Med 28:1546–1549

    CAS  PubMed  Google Scholar 

  235. Palestro CJ, Swyer AI, Kim CK et al (1991) Infected knee prosthesis: diagnosis with In-l l l leukocyte, Tc-99m sulfur colloid and Tc-99m MDP imaging. Radiology 179:645–648

    Article  CAS  PubMed  Google Scholar 

  236. Elgazzar AH, Yeung HW, Webner PJ (1996) Indium-111 leukocyte and Technetium 99m sulfur colloid uptake in Paget’s disease. J Nucl Med 37:858–861

    CAS  PubMed  Google Scholar 

  237. Seabald JE, Forstrom LA, Schauwecker DS, Brown ML, Datz FL, McAfee JG et al (1997) Procedure guideline for indium-111-leukocyte scintigraphy for suspected infection/inflammation. J Nucl Med 38:997–1001

    Google Scholar 

  238. Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, Dondi M, Watanabe N (2010) A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 37:1959–1985

    Article  PubMed  Google Scholar 

  239. Lorberboym M, Feldbrin Z, Hendel D, Blankenberg FG, Schachter P (2009) The use of 99mTc-recombinant human annexin V imaging for differential diagnosis of aseptic loosening and low-grade infection in hip and knee prostheses. J Nucl Med 50:534–537

    Article  PubMed  Google Scholar 

  240. Chacko TK, Zhuang H, Stevenson K, Moussavian B, Alavi A (2002) The influence of the location of fluorodeoxyglucose uptake in periprosthetic infection in painful; hip prostheses. Nucl Med Commun 23:851–855

    Article  CAS  PubMed  Google Scholar 

  241. Zhuang H, Durate PS, Pourdehnad M et al (2001) The promising role of F-18-FDG PET in detecting infected lower limb prosthesis implants. J Nucl Med 42:44–48

    CAS  PubMed  Google Scholar 

  242. Turpin S, Lambert R (2001) Role of scintigraphy in musculoskeletal and spinal infections. Radiol Clin North Am 39:169–189

    Article  CAS  PubMed  Google Scholar 

  243. Erba PA, Glaudemans AW, Veltman NC, Sollini M, Pacilio M, Galli F et al (2014) Image acquisition and interpretation criteria for 99mTc-HMPAO-labelled white blood cell scintigraphy: results of a multicentre study. Eur J Nucl Med Mol Imaging 41(4):615–623

    Article  PubMed  Google Scholar 

  244. Glaudemans AW, Galli F, Pacilio M, Signore A (2013) Leukocyte and bacteria imaging in prosthetic joint infection. Eur Cell Mater 25:61–77

    Article  PubMed  Google Scholar 

  245. Ledermann HP, Kaim A, Bongartz G, Steinbrich W (2000) Pitfalls and limitations of magnetic resonance imaging in chronic posttraumatic osteomyelitis. Eur Radiol 10(11):1815–1823

    Article  CAS  PubMed  Google Scholar 

  246. Epps CH, Bryant DD, Coles M, Castro O (1991) Osteomyelitis in patients who have sickle cell disease: diagnosis and treatment. J Bone Joint Surg 73:1281

    Article  PubMed  Google Scholar 

  247. Green NE, Beauchamp RD, Griffin PP (1981) Primary subacute epiphyseal osteomyelitis. J Bone Joint Surg Am 63:107–114

    Article  CAS  PubMed  Google Scholar 

  248. Rosenbaum DM, Blumhagen JD (1985) Acute epiphyseal osteomyelitis in children. Radiology 156:68–92

    Article  Google Scholar 

  249. Lew DP, Waldvogel FA (2004) Osteomyelitis. The Lancet 364(9431):369–379

    Article  CAS  Google Scholar 

  250. Yu DL, Lai SK (2016) The usefulness of post-therapeutic Ga-67 scan in prediction of recurrence of acute osteomyelitis in the diabetic foot. J Nucl Med 57(Suppl 2):1749–1749

    Google Scholar 

  251. Vouillarmet J, Morelec I, Thivolet C (2014) Assessing diabetic foot osteomyelitis remission with white blood cell SPECT/CT imaging. Diabet Med 31(9):1093–1099

    Article  CAS  PubMed  Google Scholar 

  252. Lazaga F, Van Asten SA, Nichols A, Bhavan K, La Fontaine J, Oz OK, Lavery LA (2015) Hybrid imaging with 99mTc-WBC SPECT/CT to monitor the effect of therapy in diabetic foot osteomyelitis. Int Wound J 13(6):1158–1160

    Article  PubMed  Google Scholar 

  253. Seabold JE, Simonson TM, Weber PC, Thompson BH, Harris KG, Rezai K, Madsen MT, Hoffman HT (1995) Cranial osteomyelitis: diagnosis and follow-up with In-111 white blood cell and Tc-99m methylene diphosphonate bone SPECT, CT, and MR imaging. Radiology 196(3):779–788

    Article  CAS  PubMed  Google Scholar 

  254. Cho YS, Chung DR, Lee EJ, Kim BT, Lee KH (2014) 18F-FDG PET/CT in a case of multifocal skeletal tuberculosis without pulmonary disease and potential role for monitoring treatment response. Clin Nucl Med 39(11):980–983

    Article  PubMed  Google Scholar 

  255. Sundberg SB, Savage JP, Foster BK (1989) Technetium phosphate bone scan in the diagnosis of septic arthritis in childhood. J Pediatr Orthop 9:579–585

    Article  CAS  PubMed  Google Scholar 

  256. Fortner A, Datz FL, Taylor A Jr et al (1986) Uptake of In-111-labeled leukocytes by tumor. AJR 146:621

    Article  CAS  PubMed  Google Scholar 

  257. Unger E, Moldofsky P, Gatesby R et al (1988) Diagnosis of osteomyelitis by MRI. AJR 150:605–610

    Article  CAS  PubMed  Google Scholar 

  258. Marcus CD, Ladam-Marcus VJ, Leone J, Malgrange D, Bonnet-Gausserand FM, Menanteau BP (1996) MR imaging of osteomyelitis and Neuropathic osteoarthropathy in the feet of diabetics. Radiographics 16:1337–1348

    Article  CAS  PubMed  Google Scholar 

  259. Elgazzar AH, Fernandez-Ulloa M, Silberstein EB, Gelfand MJ, Abdel-Dayem HM, Maxon HR (1993) Diagnostic value of Tl-201 as a tumor imaging agent. Nucl Med Commun 14:96–103

    Article  CAS  PubMed  Google Scholar 

  260. Stern SM, Ferguson PJ (2013) Autoinflammatory bone diseases. Rheum Dis Clin North Am 39:735–749

    Article  PubMed  Google Scholar 

  261. Gikas PD, Islam L, Aston W et al (2009) Nonbacterial osteitis: a clinical, histopathological, and imaging study with a proposal for protocol-based management of patients with this diagnosis. J Orthop Sci 14:505–516

    Article  PubMed  Google Scholar 

  262. Winters R, Tatum SA III (2014) Chronic nonbacterial osteomyelitis. Curr Opin Otolaryngol Head Neck Surg 22:332–335

    Article  PubMed  Google Scholar 

  263. Walsh P, Manners PJ, Vercoe J, Burgner D, Murray KJ (2015) Chronic recurrent multifocal osteomyelitis in children: nine years’ experience at a statewide tertiary paediatric rheumatology referral centre. Rheumatology 54(9):1688–1691

    Article  PubMed  Google Scholar 

  264. Ferguson PJ (2016) Chronic recurrent multifocal osteomyelitis and related disorders. Pediatr Syst Autoimmune Dis 11:315

    Article  Google Scholar 

  265. Mandell GA, Contreras SJ, Conard K et al (1998) Bone scintigraphy in the detection of chronic recurrent multifocal osteomyelitis. J Nucl Med 39:1178

    Google Scholar 

  266. Girschick HJ, Huppertz H, Harmsen D, Krauspe R, Muller-Hermelink HK, Papadopoulos T (1999) Chronic recurrent multifocal osteomyelitis in children: diagnostic value of histopathology and microbial testing. Hum Pathol 30:59–65

    Article  CAS  PubMed  Google Scholar 

  267. Girschick HJ, Raab P, Surbaum S, Trusen A, Kirschner S, Schneider P (2005) Chronic non-bacterial osteomyelitis in children. Ann Rheum Dis 64:279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Acikgoz G, Averill LW (2014) Chronic recurrent multifocal osteomyelitis: typical patterns of bone involvement in whole-body bone scintigraphy. Nucl Med Commun 35(8):797–807

    PubMed  Google Scholar 

  269. Ferguson PJ, Sandu M (2012) Current understanding of the pathogenesis and management of chronic recurrent multifocal osteomyelitis. Curr Rheumatol Rep 14:130–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Costa-Reis P, Sullivan KE (2013) Chronic recurrent multifocal osteomyelitis. J Clin Immunol 33:1043–1056

    Article  PubMed  Google Scholar 

  271. Quelquejay C, Job Deslandre C, Hamidou A et al (1997) Recurrent multifocal chronic osteitis in children. J Radiol 78:115

    CAS  PubMed  Google Scholar 

  272. Suma R, Vinay C, Shashikanth MC, Subba Reddy VV (2007) Garre’s sclerosing osteomyelitis. J Indian Soc Pedod Prev Dent 25(Suppl):S30–S33

    PubMed  Google Scholar 

  273. de Moraes FB, Motta TM, Severin AA, de Alencar FD, de Oliveira CF, de Souza CS (2014) Garre’s sclerosing osteomyelitis: case report. Rev Bras Ortop (English Edition) 49:401–404

    Article  Google Scholar 

  274. Gumber P, Sharma A, Sharma K, Gupta S, Bhardwaj B, Jakhar KK (2016) Garre’s sclerosing osteomyelitis-a case report. J Adv Med Dent Sci Res 4:78

    Article  Google Scholar 

  275. Franco-Jimenez S, Romero-Aguilar JF, Bervel-Clemente S, Martinez-Vaquez M, Alvarez-Benito N, Grande-Gutierrez P, Maldonado-Yanza RG (2013) Garre’s chronic sclerosing osteomyelitis with sacral involvement in a child. Rev Esp Cir Ortop Traumatol 57(2):145–149

    CAS  PubMed  Google Scholar 

  276. Bernard-Bonnin AC, Marton D, Brochu P (1987) Chronic sclerosing osteomyelitis (so-called Garrè’s). Review of 12 cases. Arch Fr Pediatr 44:277–282

    CAS  PubMed  Google Scholar 

  277. Resnick D (1989) Disorders of other endocrine glands and of pregnancy. In: Resnick D (ed) Bone and joint imaging. Saunders, Philadelphia, PA, pp 572–580

    Google Scholar 

  278. Bahk YW (2000) Noninfective osteitides. In: Bahk YW (ed) Combined scintigraphic and radiographic diagnosis of bone and joint diseases, 2nd edn. Springer, Berlin, pp 65–67

    Chapter  Google Scholar 

  279. Lovell G, Galloway H, Hopkins W, Harvey A (2006) Osteitis pubis and assessment of bone marrow edema at the pubic symphysis with MRI in an Elite Junior Male Soccer Squad. Clin J Sport Med 16:117–122

    Article  PubMed  Google Scholar 

  280. Swischuk LE (1989) Infantile cortical hyperostosis (Caffey’s disease). In: Swischuk LE (ed) Imaging of the newborn, infant and young child, 3rd edn. Williams and Wilkins, Baltimore, MD, pp 159–764

    Google Scholar 

  281. Sonozaki H, Azuma A, Okai K et al (1979) Clinical features of 22 cases with“inter-sterno-clavicular ossification” a new rheumatic syndrome. Arch Orthop Unfall 95:13–22

    CAS  Google Scholar 

  282. Bahk YW, Chung SK, Kim SH et al (1992) Pinhole scintigraphic manifestations of sternoclavicular hyperostosis: report of a case. Korean J Nucl Med 26:155–159

    Google Scholar 

  283. Sarorin DJ, Schreiman JS, Kerr R et al (1986) A review and report of 11 cases. Radiology 158:125–128

    Article  Google Scholar 

  284. Farbu E, Gilhus NE, Barnes MP, Borg K, de Visser M, Driessen A et al (2006) EFNS guideline on diagnosis and management of post-polio syndrome. Report of an EFNS task force. Eur J Neurol 13:795–801

    Article  CAS  PubMed  Google Scholar 

  285. Slavin JD, Peracha HU, Spencer RP (1987) Reduced accumulation of 99mTc-MDP in the leg related to vascular occlusion. Clin Nucl Med 12:971

    Google Scholar 

  286. Marafi FA, Ali AAS, Esmail AA, Elgazzar AH (2010) Baseline patterns of bone scintigraphy in patients with established post-poliomyelitis paralysis. Skeletal Radiol 39(9):891–895

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Elgazzar, A.H. (2017). Diagnosis of Inflammatory Bone Diseases. In: Orthopedic Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-56167-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56167-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56165-3

  • Online ISBN: 978-3-319-56167-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics