Skip to main content

RNA Sequencing Analysis of Neural Cell Lines: Impact of Normalization and Technical Replication

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10209))

Abstract

RNA sequencing offers a versatile platform for profiling biological samples. The novelty and flexibility of this technology has the potential to introduce technical variation at distinct points in the experimental workflow. We evaluated variation in RNA sequencing data acquired from commercially available cell lines cultured in our laboratory: human neural stem cells and normal human astrocytes. After normalizing data with three different methods, we used principal variance component analysis to estimate the contribution to technical variance from replicate cell lots, library preparations, and flow cells. Differentially expressed genes were evaluated using ANOVA analysis. Results indicate that the largest component of technical variance was library preparation. Moreover, comparative analysis of RNA sequencing data from the two cell types showed that the identification of differentially expressed genes and the contributions to variance are strongly influenced by the normalization method. Our results underscore the necessity for technical replication in RNA-seq experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kukurba, K.R., Montgomery, S.B.: RNA sequencing and analysis. Cold Spring Harb. Protoc. 2015, 951–969 (2015)

    Article  Google Scholar 

  2. Chen, E.A., Souaiaia, T., Herstein, J.S., Evgrafov, O.V, Spitsyna, V.N., Rebolini, D.F., Knowles, J.A.: Effect of RNA integrity on uniquely mapped reads in RNA-Seq, pp. 5–7 (2014)

    Google Scholar 

  3. Adiconis, X., Berlin, A.M., Borges-Rivera, D., Busby, M.A., DeLuca, D.S., Fennell, T., Gnirke, A., Levin, J.Z., Pochet, N., Regev, A., Satija, R., Sivachenko, A., Thompson, D.A., Wysoker, A.: Comprehensive comparative analysis of RNA sequencing methods for degraded or low input samples. Nat. Methods 10, 1–20 (2013)

    Article  Google Scholar 

  4. Lahens, N.F., Kavakli, I.H., Zhang, R., Hayer, K., Black, M.B., Dueck, H., Pizarro, A., Kim, J., Irizarry, R., Thomas, R.S., Grant, G.R., Hogenesch, J.B.: IVT-seq reveals extreme bias in RNA sequencing. Genome Biol. 15, 1–15 (2014)

    Article  Google Scholar 

  5. Tsompana, M., Valiyaparambil, S., Bard, J., Marzullo, B., Nowak, N., Buck, M.J.: An automated method for efficient, accurate and reproducible construction of RNA-seq libraries. BMC Res. Notes 8, 1–5 (2015)

    Article  Google Scholar 

  6. Bhargava, V., Head, S.R., Ordoukhanian, P., Mercola, M., Subramaniam, S.: Technical variations in low-input RNA-seq methodologies. Sci Rep. 4, 3678 (2014)

    Article  Google Scholar 

  7. Ross, M.G., Russ, C., Costello, M., Hollinger, A., Lennon, N.J., Hegarty, R., Nusbaum, C., Jaffe, D.B.: Characterizing and measuring bias in sequence data. Genome Biol. 14, R51 (2013)

    Article  Google Scholar 

  8. Bullard, J.H., Purdom, E., Hansen, K.D., Dudoit, S.: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinform. 11, 1471–2105 (2010)

    Article  Google Scholar 

  9. Risso, D., Ngai, J., Speed, T., Dudoit, S.: Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014)

    Article  Google Scholar 

  10. Robles, A., Qureshi, S.E., Stephen, S.J., Wilson, S.R., Burden, C.J., Taylor, J.M.: Efficient experimental design and analysis strategies for the detection of differential expression using RNA-sequencing. BMC Genom. 13, 1471–2164 (2012)

    Article  Google Scholar 

  11. Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M.W., Gaffney, D.J., Elo, L.L., Zhang, X., Mortazavi, A.: A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016)

    Article  Google Scholar 

  12. Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., Gilad, Y.: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008)

    Article  Google Scholar 

  13. Knight, V.B., Serrano, E.E.: Hydrogel scaffolds promote neural gene expression and structural reorganization in human astrocyte cultures. PeerJ 5, e2829 (2017)

    Article  Google Scholar 

  14. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995)

    MATH  MathSciNet  Google Scholar 

  15. Scherer, A.: Batch Effect and Experimental Noise in Microarray Studies: Sources and Solutions. Wiley, Chichester (2009)

    Book  Google Scholar 

  16. Boedigheimer, M.J., Wolfinger, R.D., Bass, M.B., Bushel, P.R., Chou, J.W., Cooper, M., Corton, J.C., Fostel, J., Hester, S., Lee, J.S., Liu, F., Liu, J., Qian, R., Quackenbush, J., Pettit, S., Thompson, K.L.: Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories. BMC Genom. 16, 1–16 (2008)

    Google Scholar 

  17. Endrullat, C., Glökler, J., Franke, P., Frohme, M.: Standardization and quality management in next-generation sequencing. Appl. Transl. Genomics 10, 2–9 (2016)

    Article  Google Scholar 

  18. SEQC-Consortium: A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium. Nat. Biotechnol. 32, 903–914 (2014)

    Google Scholar 

  19. Qin, S., Kim, J., Arafat, D., Gibson, G.: Effect of normalization on statistical and biological interpretation of gene expression profiles. Front Genet. 3, 1–11 (2013)

    Google Scholar 

Download references

Acknowledgements

Research was supported by NIH R25NS080685 and the NMSU Manasse endowment. We are grateful to Dr. Stuart Levine and Dr. Shmulik Motola of the Massachusetts Institute of Technology BioMicro Center for technical support. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or NMSU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Bleu Knight or Elba E. Serrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Knight, V.B., Serrano, E.E. (2017). RNA Sequencing Analysis of Neural Cell Lines: Impact of Normalization and Technical Replication. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics