Skip to main content

Degrees of Freedom in a Vocal Fold Inverse Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10208))

Abstract

Experimental research on human phonation is negatively affected by the complexity of the process and the limiting anatomy of the larynx. Numerical simulation of the vocal folds and the formulation of an inverse problem is one way to remedy this. Several studies have explored this choosing different degrees of freedom (DOFs) in a biomechanical Two-Mass-Model (2MM). The selection of the DOFs in an inverse problem has a critical impact on the quality of possible solutions, but also affects the complexity of the problem and convergence speed in solving it.

This work compares previous DOF configurations with several new extended configurations in solving the inverse problem for vocal fold recordings of 20 healthy female subjects. Results indicate that, for the 2MM, uncoupled mass and stiffness, and variable collision strength and damping coefficients improve the matching capabilities. They match physiology and lead to up to 50% smaller errors even for a low number of model evaluations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roy, N., Merrill, R.M., Gray, S.D., Smith, E.M.: Voice disorders in the general population: prevalence, risk factors, and occupational impact. Laryngoscope 115(11), 1988–1995 (2005)

    Article  Google Scholar 

  2. Wilson, J., Deary, I., Millar, A., Mackenzie, K.: The quality of life impact of dysphonia. Clin. Otolaryngol. Allied Sci. 27(3), 179–182 (2002)

    Article  Google Scholar 

  3. Patel, R.R., Dixon, A., Richmond, A., Donohue, K.D.: Pediatric high speed digital imaging of vocal fold vibration: a normative pilot study of glottal closure and phase closure characteristics. Int. J. Pediatr. Otorhinolaryngol. 76(7), 954–959 (2012)

    Article  Google Scholar 

  4. Ishizaka, K., Flanagan, J.L.: Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell Syst. Tech. J. 51(6), 1233–1268 (1972)

    Article  Google Scholar 

  5. Alipour, F., Berry, D.A., Titze, I.R.: A finite-element model of vocal-fold vibration. J. Acoust.Soc. Am. 108(6), 3003–3012 (2000)

    Article  Google Scholar 

  6. Yang, A., Lohscheller, J., Berry, D.A., Becker, S., Eysholdt, U., Voigt, D., Döllinger, M.: Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics. J. Acoust. Soc. Am. 127(2), 1014–1031 (2010)

    Article  Google Scholar 

  7. Döllinger, M., Hoppe, U., Hettlich, F., Lohscheller, J., Schuberth, S., Eysholdt, U.: Vibration parameter extraction from endoscopic image series of the vocal folds. IEEE Trans. Biomed. Eng. 49(8), 773–781 (2002)

    Article  Google Scholar 

  8. Tao, C., Zhang, Y., Jiang, J.J.: Extracting physiologically relevant parameters of vocal folds from high-speed video image series. IEEE Trans. Biomed. Eng. 54(5), 794–801 (2007)

    Article  Google Scholar 

  9. Wurzbacher, T., Schwarz, R., Döllinger, M., Hoppe, U., Eysholdt, U., Lohscheller, J.: Model-based classification of nonstationary vocal fold vibrations. J. Acoust. Soc. Am. 120(2), 1012–1027 (2006)

    Article  Google Scholar 

  10. Schwarz, R., Hoppe, U., Schuster, M., Wurzbacher, T., Eysholdt, U., Lohscheller, J.: Classification of unilateral vocal fold paralysis by endoscopic digital high-speed recordings and inversion of a biomechanical model. IEEE Trans. Biomed. Eng. 53(6), 1099–1108 (2006)

    Article  Google Scholar 

  11. Yang, A., Stingl, M., Berry, D.A., Lohscheller, J., Voigt, D., Eysholdt, U., Döllinger, M.: Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model. J. Acoust. Soc. Am. 130(2), 948–964 (2011)

    Article  Google Scholar 

  12. Steinecke, I., Herzel, H.: Bifurcations in an asymmetric vocal-fold model. J. Acoust. Soc. Am. 97(3), 1874–1884 (1995)

    Article  Google Scholar 

  13. Sommer, D.E., Erath, B.D., Zanartu, M., Peterson, S.D.: Corrected contact dynamics for the steinecke and herzel asymmetric two-mass model of the vocal folds. J. Acoust. Soc. Am. 132(4), EL271–EL276 (2012)

    Article  Google Scholar 

  14. Fulcher, L.P., Scherer, R.C., Melnykov, A., Gateva, V., Limes, M.E.: Negative coulomb damping, limit cycles, and self-oscillation of the vocal folds. Am. J. Phys. 74(5), 386–393 (2006)

    Article  Google Scholar 

  15. Schwarz, H.R., Köckler, N.: Numerische Mathematik. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  16. Wittenberg, T., Moser, M., Tigges, M., Eysholdt, U.: Recording, processing, and analysis of digital high-speed sequences in glottography. Mach. Vis. Appl. 8(6), 399–404 (1995)

    Article  Google Scholar 

  17. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Semmler, M., Kniesburges, S., Birk, V., Ziethe, A., Patel, R., Döllinger, M.: 3D reconstruction of human laryngeal dynamics based on endoscopic high-speed recordings. IEEE Trans. Med. Imaging 35(7), 1615–1624 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by German Research Foundation (DFG) research grants DO1247/8-1 and BO4399/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Gómez .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 3. Default parameters of the Two-Mass-Model.
Table 4. Parameter settings for DE. Explanations of the parameters can be found in the original paper by Storn and Price [17].
Table 5. Parameter ranges used for the optimization

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gómez, P., Kniesburges, S., Schützenberger, A., Bohr, C., Döllinger, M. (2017). Degrees of Freedom in a Vocal Fold Inverse Problem. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56148-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56147-9

  • Online ISBN: 978-3-319-56148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics