Skip to main content

Investigation of the Feasibility of Strain Gages as Pressure Sensors for Force Myography

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10208))

Abstract

Hand gesture recognition is a popular topic of many research studies, and force myography (FMG) has recently emerged for this application. This work investigates a novel sensor system based on electrical resistance strain gages that is fully wearable and easy-to-use. This system consists of eight strain gages embedded in a transparent flexible plastic band, covering the entire wrist. The system was tested with 8 subjects by performing 14 different hand gestures, with an accuracy of 99.2% using support vector machine. The impressive accuracy of the wearable band confirms the capability of strain gages as pressure sensors in force myography in hand gesture recognition applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pavlovic, V.I., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 677–695 (1997)

    Article  Google Scholar 

  2. Dementyev, A., Paradiso, J.A.: WristFlex. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology - UIST 2014, pp. 161–166 (2014)

    Google Scholar 

  3. Giuffrida, J.P., Lerner, A., Steiner, R., Daly, J.: Upper-extremity stroke therapy task discrimination using motion sensors and electromyography. Neural systems. IEEE Trans. Neural Syst. Rehabil. Eng. 16(1), 82–90 (2008)

    Article  Google Scholar 

  4. Jiang, H., Duerstock, B.S., Wachs, J.P.: A machine vision-based gestural interface for people with upper extremity physical impairments. IEEE Trans. Syst. Man Cybern.: Syst. 44(5), 630–641 (2014)

    Article  Google Scholar 

  5. Atzori, M., Müller, H.: Control capabilities of myoelectric robotic prostheses by hand amputees: a scientific research and market overview. Front. Syst. Neurosci. 9, 162 (2015)

    Article  Google Scholar 

  6. Georgi, M., Amma, C., Schultz, T.: Recognizing hand and finger gestures with IMU based motion and EMG based muscle activity sensing. In: Proceedings of the International Conference on Bio-inspired Systems and Signal Processing, pp. 99–108 (2015)

    Google Scholar 

  7. Xu, R., Zhou, S., Li, W.J.: MEMS accelerometer based nonspecific-user hand gesture recognition. IEEE Sensors J. 12(5), 1166–1173 (2012)

    Article  Google Scholar 

  8. Colasanto, L., Suarez, R., Rosell, J.: Man hybrid mapping assistance of teleoperated grasping tasks. IEEE Trans. Syst. Cybern. Syst. 43(2), 390–401 (2013)

    Article  Google Scholar 

  9. Heumer, G., Ben Amor, H., Jung, B.: Grasp recognition for uncalibrated data gloves: a machine learning approach. Presence Teleoper. Virtual Environ. 17(2), 121–142 (2008)

    Article  Google Scholar 

  10. Al-Timemy, A.H., Khushaba, R.N., Bugmann, G., Escudero, J.: Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 24(6), 650–661 (2016)

    Article  Google Scholar 

  11. Lin, J.W., et al.: BackHand: sensing hand gestures via back of the hand. In: Proceedings of UIST 2015, vol. C, pp. 557–564 (2015)

    Google Scholar 

  12. Ahsan, M.: Electromygraphy (EMG) signal based hand gesture recognition using artificial neural network (ANN). In: Mechatronics (ICOM 2011), May, pp. 17–19 (2011)

    Google Scholar 

  13. Zhang, Y., Harrison, C.: Tomo: wearable, low-cost electrical impedance tomography for hand gesture recognition. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, pp. 167–173 (2015)

    Google Scholar 

  14. Phillips, S.L., Craelius, W.: Residual kinetic imaging: a versatile interface for prosthetic control. Robotica 23(3), 277–282 (2005)

    Article  Google Scholar 

  15. Radmand, A., Scheme, E., Englehart, K.: High-density force myography: a possible alternative for upper-limb prosthetic control. J. Rehabil. Res. Dev. 53(4), 443–456 (2016)

    Article  Google Scholar 

  16. Xiao, Z.G., Menon, C.: Towards the development of a wearable feedback system for monitoring the activities of the upper-extremities. J. NeuroEng. Rehabil. 11(2), 13 (2014)

    Google Scholar 

  17. Kadkhodayan, A., Jiang, X., Menon, C.: Continuous prediction of finger movements using force myography. J. Med. Biol. Eng. 36(4), 594–604 (2016)

    Article  Google Scholar 

  18. Jiang, X., Merhi, L.-K., Menon, C.: Force exertion affects grasp classification using force myography. IEEE Trans. Human-Machine Syst (2017, accepted)

    Google Scholar 

  19. Jiang, X., Merhi, L.-K., Xiao, Z.G., Menon, C.: Exploration of force myography and surface electromyography in hand gesture classification. Med. Eng. Phys. (2017, in Press)

    Google Scholar 

  20. Cho, E., Chen, R., Merhi, L., Xiao, Z., Pousett, B., Menon, C.: Force myography to control robotic upper extremity prostheses: a feasibility study. Front. Bioeng. Biotechnol. 4(March), 1–12 (2016)

    Google Scholar 

  21. Li, N., Yang, D., Jiang, L., Liu, H., Cai, H.: Combined use of FSR sensor array and SVM classifier for finger motion recognition based on pressure distribution map. J. Bionic Eng. 9(1), 39–47 (2012)

    Article  Google Scholar 

  22. Amft, O., Troster, G., Lukowicz, P., Schuster, C.: Sensing muscle activities with body-worn sensors. In: International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2006), pp. 138–141 (2006)

    Google Scholar 

  23. Ogris, G., Kreil, M., Lukowicz, P.: Using FSR based muscule activity monitoring to recognize manipulative arm gestures. In: 2007 11th IEEE International Symposium on Wearable Computers, pp. 1–4 (2007)

    Google Scholar 

  24. Wang, X., Zhao, J., Yang, D., Li, N., Sun, C., Liu, H.: Biomechatronic approach to a multi-fingered hand prosthesis. In: 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 209–214 (2010)

    Google Scholar 

  25. Hollinger, A., Wanderley, M.M.: Evaluation of commercial force-sensing resistors, pp. 1–4 (2006)

    Google Scholar 

  26. Hoffmann, K.: An Introduction to Measurements Using Strain Gages. Hottinger Baldwin Messtechnik, Darmstadt (1989)

    Google Scholar 

  27. Ferrane, A., Jiang, X., Maiolo, L., Pecora, A., Colace, L., Menon, C.: A fabric-based wearable band for hand gesture recognition based on filament strain sensors: a preliminary investigation. In: 2016 IEEE Healthcare Innovation Point-of-Care Technologies Conference (HI-POCT), pp. 113–116 (2016)

    Google Scholar 

  28. Ferrone, A., Maita, F., Maiolo, L., Arquilla, M., Castiello, A., Pecora, A., Jiang, X., Menon, C., Colace, L.: Wearable band for hand gesture recognition based on strain sensors. In: 6th IEEE RAS/EMBS International Conference Biomedical Robotics and Biomechatronics (2016)

    Google Scholar 

  29. ProtoBoard. https://www.sparkfun.com/products/retired/8812. Accessed 22 Nov 2016


  30. PRE-WIRED STRAIN GAGES, Linear Gages, X-Y Planar Rosettes (Tee Rosette), 0°/45°/90° Planar Rosettes

    Google Scholar 

  31. Arduino. https://www.arduino.cc/en/Main/ArduinoBoardUno. Accessed 22 Nov 2016


  32. Skirven, T.M., et al.: Rehabilitation of the Hand and Upper Extremity, 6th edn. Elsevier/Elsevier Mosby, Philadelphia (2011)

    Google Scholar 

  33. Cutkosky, M.R.: On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 5(3), 269–279 (1989)

    Article  Google Scholar 

  34. MathWorks, MATLAB - The Language of Technical Computing

    Google Scholar 

  35. Xu, Y., Lu, G.: Analysis on fisher discriminant criterion and linear separability of feature space. In: 2006 International Conference on Computational Intelligence Security ICCIAS 2006, vol. 2, pp. 1671–1676 (2007)

    Google Scholar 

  36. Chang, C., Lin, C.: LIBSVM. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  37. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, vol. 14, no. 2, pp. 1137–1145 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Menon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ng, H.W., Jiang, X., Merhi, LK., Menon, C. (2017). Investigation of the Feasibility of Strain Gages as Pressure Sensors for Force Myography. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10208. Springer, Cham. https://doi.org/10.1007/978-3-319-56148-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56148-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56147-9

  • Online ISBN: 978-3-319-56148-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics