Skip to main content

Chaos in Laser Systems

  • Chapter
  • First Online:
Semiconductor Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 111))

  • 2210 Accesses

Abstract

Starting from the Maxwell equation in a laser medium based on the model of two-level atoms, we derive the time-dependent Maxwell–Bloch equations for field, polarization of matter, and population inversion. Then, we prove that the three differential equations are the same as those of Lorenz chaos. Well above the laser threshold, the laser reaches an unstable point at certain pump level, which is called second laser threshold. However, only a few real lasers show chaotic dynamics with a second threshold and most other lasers do not have the second threshold, resulting in stable oscillations for the increase of the pump. Stable and unstable oscillations of lasers are related to the scales of the relaxation times for the laser variables. We discuss stability and instability of lasers based on the rate equations and present their classifications from the stability point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • N.B. Abraham, L.A. Lugiato, L.M. Narducci (eds.) Special issue: instability in active optical media. J. Opt. Soc. Am. B 2 (1985)

    Google Scholar 

  • N.B. Abraham, P. Mandel, L.M. Narducci, Dynamical instabilities and pulsations in lasers (Chap. 1), in Progress in Optics, vol. 25,, ed. by E. Wolf (North-Holland, Amsterdam, 1988)

    Google Scholar 

  • F.T. Arecchi, G.L. Lippi, G.P. Puccioni, J.R. Tredicce, Deterministic chaos in laser with injected signal. Opt. Commun. 51, 308–314 (1984)

    Article  ADS  Google Scholar 

  • F. Bloch, Nuclear induction. Phys. Rev. 70, 460–474 (1946)

    Article  ADS  Google Scholar 

  • L.W. Casperson, Spontaneous coherent pulsations in laser oscillators. IEEE J. Quantum Electron. 14, 756–761 (1978)

    Article  ADS  Google Scholar 

  • H. Haken, Analogy between higher instabilities in fluids and lasers. Phys. Lett. 53A, 77–78 (1975)

    Article  ADS  Google Scholar 

  • H. Haken, Light. vol. 2 (North-Holland, Amsterdam, 1985)

    Google Scholar 

  • E.H.M. Hogenboom, W. Klische, C.O. Weiss, A. Godone, Instabilities of a homogeneously broadened laser. Phys. Rev. Lett. 55, 2571–2574 (1985)

    Article  ADS  Google Scholar 

  • T.Y. Li, J.A. Yorke, Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–148 (1963)

    Article  ADS  Google Scholar 

  • P. Mandel, H. Zeghlache, Stability of a detuned single mode homogeneously broadened ring laser. Opt. Commun. 47, 146–150 (1983)

    Article  ADS  Google Scholar 

  • P.W. Milloni, J.H. Eberly, Laser (Wiley, New York, 1988)

    Google Scholar 

  • C. Ning, H. Haken, Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations. Phys. Rev. A 41, 3826–3837 (1990)

    Article  ADS  Google Scholar 

  • J. Ohtsubo, Chaotic dynamics in semiconductor lasers with optical feedback (Chap. 1), in Progress in Optics, vol. 44,, ed. by E. Wolf (North-Holland, Amsterdam, 2002)

    Google Scholar 

  • K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, 1988)

    Book  Google Scholar 

  • H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, 2nd edn. (Springer, Berlin, 1996)

    MATH  Google Scholar 

  • J.R. Tredicce, F.T. Arecchi, G.L. Lippi, P. Puccioni, Instabilities in lasers with an injected signal. J. Opt. Soc. Am. B 2, 173–183 (1985)

    Article  ADS  Google Scholar 

  • G.H.M. van Tartwijk, G.P. Agrawal, Laser instabilities: a modern perspective. Prog. Quantum Electron. 22, 43–122 (1998)

    Article  ADS  Google Scholar 

  • C.O. Weiss, H. King, Oscillation period doubling chaos in a laser. Opt. Commun. 44, 59–61 (1982)

    Article  ADS  Google Scholar 

  • C.O. Weiss, A. Godone, A. Olafsson, Routes to chaotic emission in a cw He-Ne laser. Phys. Rev. A 28, 892–895 (1983)

    Article  ADS  Google Scholar 

  • C.O. Weiss, W. Klische, P.S. Ering, M. Cooper, Instabilities and chaos of a single mode NH3 ring laser. Opt. Commun. 44, 405–408 (1985)

    Article  ADS  Google Scholar 

  • H. Zeghlache, P. Mandel, Influence of detuning on the properties of laser equations. J. Opt. Soc. Am. B 2, 18–22 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Ohtsubo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ohtsubo, J. (2017). Chaos in Laser Systems. In: Semiconductor Lasers. Springer Series in Optical Sciences, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-56138-7_2

Download citation

Publish with us

Policies and ethics