Skip to main content

Radiation-Induced Toxicity and Related Management Strategies in Urological Malignancies

  • Chapter
  • First Online:
Book cover Principles and Practice of Urooncology

Abstract

The lower abdomen and pelvis encompass several organs at risk (OAR), some of which are vital and are inevitably affected during radiotherapy (RT). In this chapter, the contouring recommendations and dose-volume constraints of the rectum, bowel bag (i.e., the whole small and large bowel together with their meso), urinary bladder, penile bulb, proximal femurs, and sacral plexus will be discussed in order to spare these OARs as much as possible during the RT of urological malignancies. Among these OARs, the bowel bag, penile bulb, and sacral plexus are serial organs in which the maximum point dose affects the function of the whole organ. On the other hand, the rectum, bladder, and femurs are in a parallel structure for which the mean dose to a specific volume is more important than the maximum dose. In order to interpret the dose-volume histograms (DVH) precisely, the accurate delineation of OARs is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995;31:1341–6.

    Article  CAS  PubMed  Google Scholar 

  2. Program CTE. Common terminology criteria for adverse events. Version 4.0. Washington, DC: Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Department of Health and Human Services; 2009.

    Google Scholar 

  3. Gay HA, Barthold HJ, O’Meara E, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. Int J Radiat Oncol Biol Phys. 2012;83:e353–62.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Michalski JM, Gay H, Jackson A, et al. Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys. 2010;76:S123–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Meijer GJ, van den Brink M, Hoogeman MS, et al. Dose-wall histograms and normalized dose-surface histograms for the rectum: a new method to analyze the dose distribution over the rectum in conformal radiotherapy. Int J Radiat Oncol Biol Phys. 1999;45:1073–80.

    Article  CAS  PubMed  Google Scholar 

  6. Sohn M, Yan D, Liang J, et al. Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models. Int J Radiat Oncol Biol Phys. 2007;67:1066–73.

    Article  PubMed  Google Scholar 

  7. Tucker SL, Dong L, Bosch W, et al. Fit of a generalized Lyman normal-tissue complication probability (NTCP) model to grade >2 late rectal toxicity data from patients treated on protocol RTOG 94–06. In: American Society for Therapeutic Radiology and Oncology 49th Annual Meeting. Los Angeles, CA. Int J Radiat Oncol Biol Phys. 2007;69:S8–9.

    Article  Google Scholar 

  8. Peeters ST, Hoogeman MS, Heemsbergen WD, et al. Rectal bleeding, fecal incontinence, and high stool frequency after conformal radiotherapy for prostate cancer: normal tissue complication probability modeling. Int J Radiat Oncol Biol Phys. 2006;66:11–9.

    Article  PubMed  Google Scholar 

  9. Skwarchuk MW, Jackson A, Zelefsky MJ, et al. Late rectal toxicity after conformal radiotherapy of prostate cancer (I): multivariate analysis and dose-response. Int J Radiat Oncol Biol Phys. 2000;47:103–13.

    Article  CAS  PubMed  Google Scholar 

  10. Vavassori V, Fiorino C, Rancati T, et al. Predictors for rectal and intestinal acute toxicities during prostate cancer high-dose 3D-CRT: results of a prospective multicenter study. Int J Radiat Oncol Biol Phys. 2007;67:1401–10.

    Article  PubMed  Google Scholar 

  11. Willett CG, Ooi CJ, Zietman AL, et al. Acute and late toxicity of patients with inflammatory bowel disease undergoing irradiation for abdominal and pelvic neoplasms. Int J Radiat Oncol Biol Phys. 2000;46:995–8.

    Article  CAS  PubMed  Google Scholar 

  12. Peeters ST, Lebesque JV, Heemsbergen WD, et al. Localized volume effects for late rectal and anal toxicity after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2006;64:1151–61.

    Article  PubMed  Google Scholar 

  13. Michalski JM, Bae K, Roach M, et al. Long-term toxicity following 3D conformal radiation therapy for prostate cancer from the RTOG 9406 phase I/II dose escalation study. Int J Radiat Oncol Biol Phys. 2010;76:14–22.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Heemsbergen WD, Peeters ST, Koper PC, et al. Acute and late gastrointestinal toxicity after radiotherapy in prostate cancer patients: consequential late damage. Int J Radiat Oncol Biol Phys. 2006;66:3–10.

    Article  PubMed  Google Scholar 

  15. Zelefsky MJ, Levin EJ, Hunt M, et al. Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70:1124–9.

    Article  PubMed  Google Scholar 

  16. Ryu S, Pugh SL, Gerszten PC, et al. RTOG 0631 phase 2/3 study of image guided stereotactic radiosurgery for localized (1–3) spine metastases: phase 2 results. Pract Radiat Oncol. 2014;4:76–81.

    Article  PubMed  Google Scholar 

  17. Storey MR, Pollack A, Zagars G, et al. Complications from radiotherapy dose escalation in prostate cancer: preliminary results of a randomized trial. Int J Radiat Oncol Biol Phys. 2000;48:635–42.

    Article  CAS  PubMed  Google Scholar 

  18. Kuban DA, Tucker SL, Dong L, et al. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70:67–74.

    Article  PubMed  Google Scholar 

  19. Martin J, Fitzpatrick K, Horan G, et al. Treatment with a belly-board device significantly reduces the volume of small bowel irradiated and results in low acute toxicity in adjuvant radiotherapy for gynecologic cancer: results of a prospective study. Radiother Oncol. 2005;74:267–74.

    Article  PubMed  Google Scholar 

  20. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.

    Article  CAS  PubMed  Google Scholar 

  21. Keys HM, Bundy BN, Stehman FB, et al. Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J Med. 1999;340:1154–61.

    Article  CAS  PubMed  Google Scholar 

  22. Macdonald JS, Smalley SR, Benedetti J, et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med. 2001;345:725–30.

    Article  CAS  PubMed  Google Scholar 

  23. Bosset JF, Collette L, Calais G, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355:1114–23.

    Article  CAS  PubMed  Google Scholar 

  24. Mak AC, Rich TA, Schultheiss TE, et al. Late complications of postoperative radiation therapy for cancer of the rectum and rectosigmoid. Int J Radiat Oncol Biol Phys. 1994;28:597–603.

    Article  CAS  PubMed  Google Scholar 

  25. Frykholm GJ, Glimelius B, Pahlman L. Preoperative or postoperative irradiation in adenocarcinoma of the rectum: final treatment results of a randomized trial and an evaluation of late secondary effects. Dis Colon Rectum. 1993;36:564–72.

    Article  CAS  PubMed  Google Scholar 

  26. Peeters KC, van de Velde CJ, Leer JW, et al. Late side effects of short-course preoperative radiotherapy combined with total mesorectal excision for rectal cancer: increased bowel dysfunction in irradiated patients—a Dutch colorectal cancer group study. J Clin Oncol. 2005;23:6199–206.

    Article  CAS  PubMed  Google Scholar 

  27. Bujko K, Nowacki MP, Nasierowska-Guttmejer A, et al. Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer. Br J Surg. 2006;93:1215–23.

    Article  CAS  PubMed  Google Scholar 

  28. Birgisson H, Pahlman L, Gunnarsson U, Glimelius B. Late gastrointestinal disorders after rectal cancer surgery with and without preoperative radiation therapy. Br J Surg. 2008;95:206–13.

    Article  CAS  PubMed  Google Scholar 

  29. Kavanagh BD, Pan CC, Dawson LA, et al. Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys. 2010;76:S101–7.

    Article  PubMed  Google Scholar 

  30. Lawton CA, Michalski J, El-Naqa I, et al. RTOG GU radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2009;74:383–7.

    Article  PubMed  Google Scholar 

  31. Kachnic LA, Winter K, Myerson RJ, et al. RTOG 0529: a phase 2 evaluation of dose-painted intensity modulated radiation therapy in combination with 5-fluorouracil and mitomycin-C for the reduction of acute morbidity in carcinoma of the anal canal. Int J Radiat Oncol Biol Phys. 2013;86:27–33.

    Article  CAS  PubMed  Google Scholar 

  32. Hoyer M, Roed H, Traberg Hansen A, et al. Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol. 2006;45:823–30.

    Article  PubMed  Google Scholar 

  33. Koong AC, Christofferson E, Le QT, et al. Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2005;63:320–3.

    Article  PubMed  Google Scholar 

  34. Schellenberg D, Goodman KA, Lee F, et al. Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2008;72:678–86.

    Article  CAS  PubMed  Google Scholar 

  35. Viswanathan AN, Yorke ED, Marks LB, et al. Radiation dose-volume effects of the urinary bladder. Int J Radiat Oncol Biol Phys. 2010;76:S116–22.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Muren LP, Smaaland R, Dahl O. Organ motion, set-up variation and treatment margins in radical radiotherapy of urinary bladder cancer. Radiother Oncol. 2003;69:291–304.

    Article  PubMed  Google Scholar 

  37. Turner SL, Swindell R, Bowl N, et al. Bladder movement during radiation therapy for bladder cancer: implications for treatment planning. Int J Radiat Oncol Biol Phys. 1997;39:355–60.

    Article  CAS  PubMed  Google Scholar 

  38. Peeters ST, Heemsbergen WD, van Putten WL, et al. Acute and late complications after radiotherapy for prostate cancer: results of a multicenter randomized trial comparing 68 Gy to 78 Gy. Int J Radiat Oncol Biol Phys. 2005;61:1019–34.

    Article  PubMed  Google Scholar 

  39. Cahlon O, Zelefsky MJ, Shippy A, et al. Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys. 2008;71:330–7.

    Article  CAS  PubMed  Google Scholar 

  40. Green N, Treible D, Wallack H. Prostate cancer: post-irradiation incontinence. J Urol. 1990;144:307–9.

    Article  CAS  PubMed  Google Scholar 

  41. Peeters ST, Hoogeman MS, Heemsbergen WD, et al. Volume and hormonal effects for acute side effects of rectum and bladder during conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2005;63:1142–52.

    Article  PubMed  Google Scholar 

  42. Levine LA, Richie JP. Urological complications of cyclophosphamide. J Urol. 1989;141:1063–9.

    Article  CAS  PubMed  Google Scholar 

  43. Moonen L, van der Voet H, Horenblas S, Bartelink H. A feasibility study of accelerated fractionation in radiotherapy of carcinoma of the urinary bladder. Int J Radiat Oncol Biol Phys. 1997;37:537–42.

    Article  CAS  PubMed  Google Scholar 

  44. Shipley WU, Bae K, Efstathiou JA, et al. Late pelvic toxicity following bladder-sparing therapy in patients with invasive bladder cancer: Analysis of RTOG 89-03, 95-06, 97-06, 99-06. In: American Society for Therapeutic Radiology and Oncology 49th Annual Meeting. Los Angeles, CA. Int J Radiat Oncol Biol Phys. 2007;69:S38.

    Article  Google Scholar 

  45. Pos FJ, van Tienhoven G, Hulshof MC, et al. Concomitant boost radiotherapy for muscle invasive bladder cancer. Radiother Oncol. 2003;68:75–80.

    Article  PubMed  Google Scholar 

  46. Rodel C, Grabenbauer GG, Kuhn R, et al. Combined-modality treatment and selective organ preservation in invasive bladder cancer: long-term results. J Clin Oncol. 2002;20:3061–71.

    Article  PubMed  Google Scholar 

  47. Mangar SA, Foo K, Norman A, et al. Evaluating the effect of reducing the high-dose volume on the toxicity of radiotherapy in the treatment of bladder cancer. Clin Oncol (R Coll Radiol). 2006;18:466–73.

    Article  CAS  Google Scholar 

  48. Cowan RA, McBain CA, Ryder WD, et al. Radiotherapy for muscle-invasive carcinoma of the bladder: results of a randomized trial comparing conventional whole bladder with dose-escalated partial bladder radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59:197–207.

    Article  PubMed  Google Scholar 

  49. Scholten AN, Leer JW, Collins CD, et al. Hypofractionated radiotherapy for invasive bladder cancer. Radiother Oncol. 1997;43:163–9.

    Article  CAS  PubMed  Google Scholar 

  50. Al-Mamgani A, van Putten WL, Heemsbergen WD, et al. Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2008;72:980–8.

    Article  PubMed  Google Scholar 

  51. Wallner KE, Merrick GS, Benson ML, et al. Penile bulb imaging. Int J Radiat Oncol Biol Phys. 2002;53:928–33.

    Article  PubMed  Google Scholar 

  52. Robinson JW, Moritz S, Fung T. Meta-analysis of rates of erectile function after treatment of localized prostate carcinoma. Int J Radiat Oncol Biol Phys. 2002;54:1063–8.

    Article  PubMed  Google Scholar 

  53. Mangar SA, Sydes MR, Tucker HL, et al. Evaluating the relationship between erectile dysfunction and dose received by the penile bulb: using data from a randomised controlled trial of conformal radiotherapy in prostate cancer (MRC RT01, ISRCTN47772397). Radiother Oncol. 2006;80:355–62.

    Article  PubMed  Google Scholar 

  54. van der Wielen GJ, Hoogeman MS, Dohle GR, et al. Dose-volume parameters of the corpora cavernosa do not correlate with erectile dysfunction after external beam radiotherapy for prostate cancer: results from a dose-escalation trial. Int J Radiat Oncol Biol Phys. 2008;71:795–800.

    Article  PubMed  Google Scholar 

  55. Wernicke AG, Valicenti R, Dieva K, et al. Radiation dose delivered to the proximal penis as a predictor of the risk of erectile dysfunction after three-dimensional conformal radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2004;60:1357–63.

    Article  PubMed  Google Scholar 

  56. Mantz CA, Nautiyal J, Awan A, et al. Potency preservation following conformal radiotherapy for localized prostate cancer: impact of neoadjuvant androgen blockade, treatment technique, and patient-related factors. Cancer J Sci Am. 1999;5:230–6.

    CAS  PubMed  Google Scholar 

  57. Rosen RC, Riley A, Wagner G, et al. The international index of erectile function (IIEF): a multidimensional scale for assessment of erectile dysfunction. Urology. 1997;49:822–30.

    Article  CAS  PubMed  Google Scholar 

  58. Fisch BM, Pickett B, Weinberg V, Roach M. Dose of radiation received by the bulb of the penis correlates with risk of impotence after three-dimensional conformal radiotherapy for prostate cancer. Urology. 2001;57:955–9.

    Article  CAS  PubMed  Google Scholar 

  59. Roach M, Winter K, Michalski JM, et al. Penile bulb dose and impotence after three-dimensional conformal radiotherapy for prostate cancer on RTOG 9406: findings from a prospective, multi-institutional, phase I/II dose-escalation study. Int J Radiat Oncol Biol Phys. 2004;60:1351–6.

    Article  PubMed  Google Scholar 

  60. Roach M 3rd, Nam J, Gagliardi G, et al. Radiation dose-volume effects and the penile bulb. Int J Radiat Oncol Biol Phys. 2010;76:S130–4.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zelefsky MJ, Eid JF. Elucidating the etiology of erectile dysfunction after definitive therapy for prostatic cancer. Int J Radiat Oncol Biol Phys. 1998;40:129–33.

    Article  CAS  PubMed  Google Scholar 

  62. Grigsby PW, Roberts HL, Perez CA. Femoral neck fracture following groin irradiation. Int J Radiat Oncol Biol Phys. 1995;32:63–7.

    Article  CAS  PubMed  Google Scholar 

  63. Huh SJ, Kim B, Kang MK, et al. Pelvic insufficiency fracture after pelvic irradiation in uterine cervix cancer. Gynecol Oncol. 2002;86:264–8.

    Article  PubMed  Google Scholar 

  64. Yi SK, Mak W, Yang CC, et al. Development of a standardized method for contouring the lumbosacral plexus: a preliminary dosimetric analysis of this organ at risk among 15 patients treated with intensity-modulated radiotherapy for lower gastrointestinal cancers and the incidence of radiation-induced lumbosacral plexopathy. Int J Radiat Oncol Biol Phys. 2012;84:376–82.

    Article  PubMed  Google Scholar 

  65. Dahele M, Davey P, Reingold S, Shun Wong C. Radiation-induced lumbo-sacral plexopathy (RILSP): an important enigma. Clin Oncol (R Coll Radiol). 2006;18:427–8.

    Article  CAS  Google Scholar 

  66. Topkan E, Önal HC, Yavuz AA, Yavuz MN. Pathophysiology and management of radiation-induced lumbosacral plexopathy. Turk Onkoloji Dergisi. 2008;23:147–52.

    Google Scholar 

  67. Georgiou A, Grigsby PW, Perez CA. Radiation induced lumbosacral plexopathy in gynecologic tumors: clinical findings and dosimetric analysis. Int J Radiat Oncol Biol Phys. 1993;26:479–82.

    Article  CAS  PubMed  Google Scholar 

  68. Tunio M, Al Asiri M, Bayoumi Y, et al. Lumbosacral plexus delineation, dose distribution, and its correlation with radiation-induced lumbosacral plexopathy in cervical cancer patients. Onco Targets Ther. 2015;8:21–7.

    CAS  PubMed  Google Scholar 

  69. Thomas JE, Cascino TL, Earle JD. Differential diagnosis between radiation and tumor plexopathy of the pelvis. Neurology. 1985;35:1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezin Yuce Sari M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sari, S.Y., Gultekin, M., Hurmuz, P., Yazici, G., Akyol, F., Ozyigit, G. (2017). Radiation-Induced Toxicity and Related Management Strategies in Urological Malignancies. In: Ozyigit, G., Selek, U. (eds) Principles and Practice of Urooncology. Springer, Cham. https://doi.org/10.1007/978-3-319-56114-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56114-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56113-4

  • Online ISBN: 978-3-319-56114-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics