Skip to main content

Radiological Imaging in Urological Cancers

  • 1059 Accesses

Abstract

The use of radiological imaging in urological cancers is increasing with improvements in imaging technologies and implementation of these techniques to clinical scenarios. Ultrasonography, computed tomography, and magnetic resonance imaging have enormous potentials in the diagnosis, staging, and surveillance of urological cancers. Emerging imaging techniques enable morphologic assessment of urological cancers with high spatial and contrast resolution. Functional imaging techniques reveal microstructure of tumors which can be used in the diagnosis, prediction of prognosis, and assessment of response to treatment and surveillance of tumors. Biopsyless diagnosis may be possible in the future particularly for renal and prostate tumors. In this chapter, current status of urooncologic imaging will be reviewed.

Keywords

  • Urological cancers
  • Radiology
  • Imaging

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-56114-1_1
  • Chapter length: 58 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-56114-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9
Fig. 1.10
Fig. 1.11
Fig. 1.12
Fig. 1.13
Fig. 1.14
Fig. 1.15
Fig. 1.16
Fig. 1.17
Fig. 1.18
Fig. 1.19
Fig. 1.20
Fig. 1.21
Fig. 1.22
Fig. 1.23
Fig. 1.24
Fig. 1.25
Fig. 1.26
Fig. 1.27
Fig. 1.28
Fig. 1.29
Fig. 1.30
Fig. 1.31
Fig. 1.32
Fig. 1.33
Fig. 1.34
Fig. 1.35
Fig. 1.36
Fig. 1.37
Fig. 1.38
Fig. 1.39
Fig. 1.40
Fig. 1.41
Fig. 1.42
Fig. 1.43
Fig. 1.44
Fig. 1.45
Fig. 1.46
Fig. 1.47

References

  1. Compérat E, Camparo P. Histological classification of malignant renal tumours at a time of major diagnostic and therapeutic changes. Diagn Interv Imaging. 2012;93:221–31.

    PubMed  CrossRef  Google Scholar 

  2. Patard JJ, Leray E, Rioux-Leclercq N, et al. Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J Clin Oncol. 2005;23:2763–71.

    PubMed  CrossRef  Google Scholar 

  3. Thompson RH, Kurta JM, Kaag M, et al. Tumor size is associated with malignant potential in renal cell carcinoma. J Urol. 2009;181:2033–6.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  4. Patel MI, Simmons R, Kattan MW, et al. Long-term follow-up of bilateral sporadic renal tumors. Urology. 2003;61:921–5.

    PubMed  CrossRef  Google Scholar 

  5. Richstone L, Scherr DS, Reuter VR, et al. Multifocal renal cortical tumors: frequency, associated clinicopathological features and impact on survival. J Urol. 2004;171:615–20.

    PubMed  CrossRef  Google Scholar 

  6. Zirinsky K, Auh YH, Rubenstein WA, et al. CT of the hyperdense renal cyst: sonographic correlation. AJR Am J Roentgenol. 1984;143:151–6.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Forman HP, Middleton WD, Melson GL, et al. Hyperechoic renal cell carcinomas: increase in detection at US. Radiology. 1993;188:431–4.

    CAS  PubMed  CrossRef  Google Scholar 

  8. Press GA, McClennan BL, Melson GL, et al. Papillary renal cell carcinoma: CT and sonographic evaluation. AJR Am J Roentgenol. 1984;143:1005–9.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Hartman DS, David CJ Jr, Goldman SM, et al. Renal lymphoma: radiologic-pathologic correlation of 21 cases. Radiology. 1982;144:759–66.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Markic D, Krpina K, Ahel J, Spanjol J, Grskovic A, Stifter S, et al. Different presentations of renal cell cancer on ultrasound and computerized tomography. Urologia. 2014;81:228–32.

    PubMed  CrossRef  Google Scholar 

  11. Wang C, Yu C, Yang F, Yang G. Diagnostic accuracy of contrast- enhanced ultrasound for renal cell carcinoma: a meta-analysis. Tumour Biol. 2014;35:6343–50.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Onur MR, Poyraz AK, Bozgeyik Z, Onur AR, Orhan I. Utility of semiquantitative strain elastography for differentiation between benign and malignant solid renal masses. J Ultrasound Med. 2015;34:639–47.

    PubMed  CrossRef  Google Scholar 

  13. Habboub HK, Abu-Yousef MM, Williams RD, See WA, Schweiger GD. Accuracy of color Doppler sonography in assessing venous thrombus extension in renal cell carcinoma. Am J Roentgenol. 1997;168:267–71.

    CAS  CrossRef  Google Scholar 

  14. Hricak H, Thoeni RF, Carroll PR, Demas BE, Marotti M, Tanagho EA. Detection and staging of renal neoplasms: a reassessment of MR imaging. Radiology. 1988;166:643–9.

    CAS  PubMed  CrossRef  Google Scholar 

  15. Roubidoux MA, Dunnick NR, Sostman HD, Leder RA. Renal carcinoma: detection of venous extension with gradient-echo MR imaging. Radiology. 1992;182:269–72.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Jamis-Dow CA, Choyke PL, Jennings SB, et al. Small (< or 5 3-cm) renal masses: detection with CT versus US and pathologic correlation. Radiology. 1996;198:785–8.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Bhosale PR, Wei W, Ernst RD, Bathala TK, Reading RM, Wood CG, et al. Intraoperative sonography during open partial nephrectomy for renal cell cancer: does it alter surgical management. Am J Roentgenol. 2014;203:822–7.

    CrossRef  Google Scholar 

  18. Zhang J, Lefkowitz RA, Bach A. Imaging of kidney cancer. Radiol Clin North Am. 2007;45:119–47.

    PubMed  CrossRef  Google Scholar 

  19. Sankineni S, Brown A, Cieciera M, Choyke PL, Turkbey B. Imaging of renal cell carcinoma. Urol Oncol. 2016;34:147–55.

    PubMed  CrossRef  Google Scholar 

  20. Kang SK, Kim D, Chandarana H. Contemporary imaging of the renal mass. Curr Urol Rep. 2011;12:11–7.

    PubMed  CrossRef  Google Scholar 

  21. Hélénon O, Eiss D, Debrito P, Merran S, Correas JM. How to characterise a solid renal mass: a new classification proposal for a simplified approach. Diagn Interv Imaging. 2012;93:232–45.

    PubMed  CrossRef  Google Scholar 

  22. Zhang J, Lefkowitz RA, Ishill NM, et al. Solid renal cortical tumors: differentiation with CT. Radiology. 2007;244:494–504.

    PubMed  CrossRef  Google Scholar 

  23. Herts BR, Coll DM, Novick AC, et al. Enhancement characteristics of papillary renal neoplasms revealed on triphasic helical CT of the kidneys. AJR Am J Roentgenol. 2002;178:367–72.

    PubMed  CrossRef  Google Scholar 

  24. Couvidat C, Eiss D, Merran S, Vieillefond A, Correas JM, Hélénon O. Papillary renal cell carcinoma: spectrum of imaging findings with pathologic correlation. Chicago, United States, RSNA annual meeting; 2008 30th November–5th December.

    Google Scholar 

  25. Israel GM, Hindman N, Bosniak MA. Evaluation of cystic renal masses: comparison of CT and MR imaging by using the Bosniak classification system. Radiology. 2004;231:365–71.

    PubMed  CrossRef  Google Scholar 

  26. Abdulla C, Kalra MK, Saini S, et al. Pseudoenhancement of simulated renal cysts in a phantom using different multidetector CT scanners. AJR Am J Roentgenol. 2002;179:1473–6.

    PubMed  CrossRef  Google Scholar 

  27. Lesavre A, Correas JM, Merran S, Grenier N, Vieillefond A, Hélénon O. CT of papillary renal cell carcinoma with cholesterol necrosis mimicking angiomyolipomas. AJR Am J Roentgenol. 2003;181:143–5.

    PubMed  CrossRef  Google Scholar 

  28. Kallman DA, King BF, Hattery RR, Charboneau JW, Ehman RL, Guthman DA, et al. Renal vein and inferior vena cava tumor thrombus in renal cell carcinoma: CT, US, MRI and venacavography. J Comput Assist Tomogr. 1992;16:240–7.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Kutikov A, Smaldone MC, Egleston BL, et al. Anatomic features of enhancing renal masses predict malignant and high-grade pathology: a preoperative nomogram using the RENAL nephrometry score. Eur Urol. 2011;60:241–8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  30. Karçaaltıncaba M, Aktaş A. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn Interv Radiol. 2011;17:181–94.

    PubMed  Google Scholar 

  31. Graser A, Becker CR, Staehler M, et al. Single phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol. 2010;45:399–405.

    PubMed  Google Scholar 

  32. Mileto A, Nelson RC, Paulson EK, Marin D. Dual-Energy MDCT for Imaging the Renal Mass. AJR Am J Roentgenol. 2015;204:W640–7.

    PubMed  CrossRef  Google Scholar 

  33. Pretorius ES, Wickstrom ML, Siegelman ES. MR imaging of renal neoplasms. Magn Reson Imaging Clin N Am. 2000;8:813–36.

    CAS  PubMed  Google Scholar 

  34. Willatt JM, Hussain HK, Chong S, Kappil M, Azar SF, Liu PS, et al. MR imaging in the characterization of small renal masses. Abdom Imaging. 2014;39:761–9.

    PubMed  CrossRef  Google Scholar 

  35. Taouli B, Thakur RK, Mannelli L, Babb JS, Kim S, Hecht EM, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology. 2009;251:398–407.

    PubMed  CrossRef  Google Scholar 

  36. Wang H, Cheng L, Zhang X, Wang D, Guo A, Gao Y, et al. Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology. 2010;257:135–43.

    PubMed  CrossRef  Google Scholar 

  37. Sasiwimonphan K, Takahashi N, Leibovich BC, Carter RE, Atwell TD, Kawashima A. Small (< 4 cm) renal mass: differentiation of angiomyolipoma without visible fat from renal cell carcinoma utilizing MR imaging. Radiology. 2012;263:160–8.

    PubMed  CrossRef  Google Scholar 

  38. Lanzman RS, Robson PM, Sun MR, Patel AD, Mentore K, Wagner AA, et al. Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings. Radiology. 2012;265:799–808.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Wagstaff PG, Zondervan PJ, de la Rosette JJ, Laguna MP. The role of imaging in the active surveillance of small renal masses. Curr Urol Rep. 2014;15:386.

    CAS  PubMed  CrossRef  Google Scholar 

  40. Min JH, Kim CK, Park BK, Kim E, Kim B. Assessment of renal lesions with blood oxygenation level-dependent MRI at 3T:preliminary experience. Am J Roentgenol. 2011;197:W489–94.

    CrossRef  Google Scholar 

  41. Rha SE, Byun JY, Jung SE, et al. The renal sinus: pathologic spectrum and multimodality imaging approach. Radiographics. 2004;24:S117–31.

    PubMed  CrossRef  Google Scholar 

  42. Urban BA, Buckley J, Soyer P, et al. CT appearance of transitional cell carcinoma of the renal pelvis: Part 1. early-stage disease. AJR Am J Roentgenol. 1997;169:157–61.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Browne RF, Meehan CP, Colville J, et al. Transitional cell carcinoma of the upper urinary tract: spectrum of imaging findings. Radiographics. 2005;25:1609–27.

    PubMed  CrossRef  Google Scholar 

  44. Urban BA, Buckley J, Soyer P, et al. CT appearance of transitional cell carcinoma of the renal pelvis: Part 2. advanced-stage disease. AJR Am J Roentgenol. 1997;169:163–8.

    CAS  PubMed  CrossRef  Google Scholar 

  45. Curry NS. Small renal masses (lesions smaller than 3 cm): imaging evaluation and management. AJR Am J Roentgenol. 1995;164:355–62.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Israel GM, Krinsky GA. MR imaging of the kidneys and adrenal glands. Radiol Clin North Am. 2003;41:145–59.

    PubMed  CrossRef  Google Scholar 

  47. Cohan RH, Dunnick NR, Leder RA, et al. Computed tomography of renal lymphoma. J Comput Assist Tomogr. 1990;14:933–8.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Johnson CD, Dunnick NR, Cohan RH, et al. Renal adenocarcinoma: CT staging of 100 tumors. AJR Am J Roentgenol. 1987;148:59–63.

    CAS  PubMed  CrossRef  Google Scholar 

  49. Roy C Sr, El Ghali S, Buy X, et al. Significance of the pseudocapsule on MRI of renal neoplasms and its potential application for local staging: a retrospective study. AJR Am J Roentgenol. 2005;184:113–20.

    PubMed  CrossRef  Google Scholar 

  50. Narumi Y, Miyazaki T, Hatanaka Y, et al. MR imaging evaluation of renal carcinoma. Abdom Imaging. 1997;22:216–25.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Jayson M, Sanders H. Increased incidence of serendipitously discovered renal cell carcinoma. Urology. 1998;51:203–5.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Hui GC, Tuncali K, Tatli S, Morrison PR, Silverman SG. Comparison of percutaneous and surgical approaches to renal tumor ablation: metaanalysis of effectiveness and complication rates. J Vasc Interv Radiol. 2008;19:1311–20.

    PubMed  CrossRef  Google Scholar 

  53. Cornelis F, Balageas P, Le Bras Y, Rigou G, Boutault JR, Bouzgarrou M, Grenier N. Radiologically-guided thermal ablation of renal tumours. Diagn Interv Imaging. 2012;93:246–61.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Gervais DA, Arellano RS, McGovern FJ, McDougal WS, Mueller PR. Radiofrequency ablation of renal cell carcinoma: part 2. Lessons learned with ablation of 100 tumors. AJR. 2005;185:72–80.

    PubMed  CrossRef  Google Scholar 

  55. Mylona S, Kokkinaki A, Pomoni M, Galani P, Ntai S, Thanos L. Percutaneous radiofrequency ablation of renal cell carcinomas in patients with solitary kidney: 6 years experience. Eur J Radiol. 2009;69:351–6.

    PubMed  CrossRef  Google Scholar 

  56. Zagoria RJ, Traver MA, Werle DM, Perini M, Hayasaka S, Clark PE. Oncologic efficacy of CT-guided percutaneous radiofrequency ablation of renal cell carcinomas. AJR. 2007;189:429–36.

    PubMed  CrossRef  Google Scholar 

  57. Veltri A, Grosso M, Castagneri F, Garetto I, Sacchetto P, Tosetti I, et al. Radiofrequency thermal ablation of small tumors in transplanted kidneys: an evolving nephron-sparing option. J Vasc Interv Radiol. 2009;20:674–9.

    PubMed  CrossRef  Google Scholar 

  58. Kunkle DA, Uzzo RG. Cryoablation or radiofrequency ablation of the small renal mass: a meta-analysis. Cancer. 2008;113:2671–80.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  59. Wright AS, Sampson LA, Warner TF, Mahvi DM, Lee FT. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology. 2005;236:132–9.

    PubMed  CrossRef  Google Scholar 

  60. Rais-Bahrami S, Pietryga JA, Nix JW. Contemporary role of advanced imaging for bladder cancer staging. Urol Oncol. 2016;34:124–33.

    PubMed  CrossRef  Google Scholar 

  61. Purysko AS, Leão Filho HM, Herts BR. Radiologic imaging of patients with bladder cancer. Semin Oncol. 2012;39:543–58.

    PubMed  CrossRef  Google Scholar 

  62. Datta SN, Allen GM, Evans R, Vaughton KC, Lucas MG. Urinary tract ultrasonography in the evaluation of haematuria – a report of over 1,000 cases. Ann R Coll Surg Engl. 2002;84:203–5.

    Google Scholar 

  63. Roy C. Tumour pathology of the bladder: the role of MRI. Diagn Interv Imaging. 2012;93:297–309.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Totaro A, Pinto F, Brescia A, Racioppi M, Cappa E, D’Agostino D, Volpe A, Sacco E, Palermo G, Valentini A, Bassi P. Imaging in bladder cancer: present role and future perspectives. Urol Int. 2010;85:373–80.

    PubMed  CrossRef  Google Scholar 

  65. Kocakoc E, Kiris A, Orhan I, Poyraz AK, Artas H, Firdolas F. Detection of bladder tumors with 3-dimensional sonography and virtual sonographic cystoscopy. J Ultrasound Med. 2008;27:45–53.

    PubMed  CrossRef  Google Scholar 

  66. Nicolau C, Bunesch L, Sebastia C, Salvador R. Diagnosis of bladder cancer: contrast-enhanced ultrasound. Abdom Imaging. 2010;35:494–503.

    PubMed  CrossRef  Google Scholar 

  67. ACR Appropriateness Criteria. Hematuria. American College of Radiology. 2008. Accessed www.acr.org

  68. M R. Tumours of the bladder: what does the urologist expect from imaging? Diagn Interv Imaging. 2012;93:291–6.

    CrossRef  Google Scholar 

  69. Sadow CA, Silverman SG, O’Leary MP, JE S. Bladder cancer detection with CT urography in an Academic Medical Center. Radiology. 2008;249:195–202.

    PubMed  CrossRef  Google Scholar 

  70. Kim JK, Park SY, Ahn HJ, Kim CS, KS C. Bladder cancer: analysis of multi-detector row helical CT enhancement pattern and accuracy in tumor detection and perivesical staging. Radiology. 2004;231:725–31.

    PubMed  CrossRef  Google Scholar 

  71. Turkbey B, Basaran C, Karcaaltincaba M, Akpinar E, Oguz B, Akata D, Ozmen MN, O A. Peritoneal carcinomatosis in urinary bladder cancer. Clin Imaging. 2008;32:192–5.

    PubMed  CrossRef  Google Scholar 

  72. Caoili EM, Cohan RH, Inampudi P, Ellis JH, Shah RB, Faerber GJ, Montie JE. MDCT urography of upper tract urothelial neoplasms. AJR Am J Roentgenol. 2005;184:1873–81.

    PubMed  CrossRef  Google Scholar 

  73. Pfister C, Roupret M, Wallerand H, Davin JL, Quintens H, Guy L, et al. Recommandations en onco-urologie 2010: tumeurs urothéliales. Prog Urol. 2010;20:S255–74.

    PubMed  CrossRef  Google Scholar 

  74. Turney BW, Willatt JM, Nixon D, Crew JP, Cowan NC. Computed tomography urography for diagnosing bladder cancer. BJU Int. 2006;98:345–8.

    PubMed  CrossRef  Google Scholar 

  75. Zhang J, Gerst S, Lefkowitz RA, Bach A. Imaging of bladder cancer. Radiol Clin North Am. 2007;45:183–205.

    PubMed  CrossRef  Google Scholar 

  76. Tuncbilek N, Kaplan M, Altaner S, Atakan IH, Süt N, Inci O, et al. Value of dynamic contrast enhanced MRI and correlation with tumor angiogenesis in bladder cancer. AJR. 2009;192:949–55.

    PubMed  CrossRef  Google Scholar 

  77. Scattoni V, Da Pozzo LF, Colombo R. Dynamic gadolinium enhanced magnetic resonance imaging in staging of superficial bladder cancer. J Urol. 1996;155:1594–5.

    CAS  PubMed  CrossRef  Google Scholar 

  78. Abou-El-Ghar ME, El-Assmy A, Refaie HF, El-Diasty T. Bladder cancer: diagnosis with diffusion-weighted MR imaging in patients with gross hematuria. Radiology. 2009;251:415–21.

    PubMed  CrossRef  Google Scholar 

  79. Dağgülli M, Onur MR, Fırdolaş F, Onur R, Kocakoç E, Orhan İ. Role of diffusion MRI and apparent diffusion coefficient measurement in the diagnosis, staging and pathological classification of bladder tumors. Urol Int. 2011;87:346–52.

    PubMed  CrossRef  Google Scholar 

  80. Takeuchi M, Sasaki S, Ito M, Okada S, Takahashi S, Tatsuya K, et al. Diffusion weighted MR imaging – accuracy for diagnosing t stage and estimating histologic grade. Radiology. 2009;251:112–21.

    Google Scholar 

  81. El-Assmy A, Abou-El-Ghar ME, Mosbah A, et al. Bladder tumour staging: comparison of diffusion- and T2-weighted MR imaging. Eur Radiol. 2009;19:1575–81.

    PubMed  CrossRef  Google Scholar 

  82. Barentsz JO, Ruijs SH, Strijk SP. The role of MR imaging in carcinoma of the urinary bladder. AJR Am J Roentgenol. 1993;160:937–47.

    CAS  PubMed  CrossRef  Google Scholar 

  83. ACR Appropriateness Criteria. Pretreatment staging of invasive bladder cancer. American College of Radiology. 2009. Accessed www.acr.org

  84. Bindu NS, Nagaraj SH, Dushyant VS. State of the art cross-sectional imaging in bladder cancer. Curr Probl Diagn Radiol. 2007;36:83–96.

    CrossRef  Google Scholar 

  85. Tachibana M, Baba S, Deguchi N, et al. Efficacy of gadolinium-diethylenetriaminepentaacetic acid-enhanced magnetic resonance imaging for differentiation between superficial and muscle-invasive tumor of the bladder: a comparative study with computerized tomography and transurethral ultrasonography. J Urol. 1991;145:1169–73.

    CAS  PubMed  CrossRef  Google Scholar 

  86. Kim B, Semelka RC, Ascher SM, Chalpin DB, Carroll PR, Hricak H. Bladder tumor staging: comparison of contrast enhanced CT, T1- and T2-weighted MR imaging, dynamic gadolinium-enhanced imaging, and late gadolinium-enhanced imaging. Radiology. 1994;193:239–45.

    CAS  PubMed  CrossRef  Google Scholar 

  87. Tanimoto A, Yuasa Y, Imai Y, et al. Bladder tumor staging: comparison of conventional and gadolinium-enhanced dynamic MR imaging and CT. Radiology. 1992;185:741–7.

    CAS  PubMed  CrossRef  Google Scholar 

  88. Swinnen G, Maes A, Pottel H, et al. FDG-PET/CT for the preoperative lymph node staging of invasive bladder cancer. Eur Urol. 2010;57:641–7.

    PubMed  CrossRef  Google Scholar 

  89. American Urological Association. Bladder Cancer Clinical Guideline Update Panel. The management of bladder cancer: diagnosis and treatment recommendations. American Urological Association Education and Research, Inc; 2007 (reviewed and validity confirmed 2010). Accessed www.auanet.org

  90. Brausi M, Witjes JA, Lamm D, et al. A review of current guidelines and best practice recommendations for the management of nonmuscle invasive bladder cancer by the International Bladder Cancer Group. J Urol. 2011;186:2158–67.

    PubMed  CrossRef  Google Scholar 

  91. Beyersdorff D, Zhang J, Schöder H, Bochner B, Hricak H. Bladder cancer: can imaging change patient management? Curr Opin Urol. 2008;18:98–104.

    PubMed  CrossRef  Google Scholar 

  92. Yoshida S, Koga F, Kawakami S, et al. Initial experience of diffusion-weighted magnetic resonance imaging to assess therapeutic response to induction chemoradiotherapy against muscle-invasive bladder cancer. Urology. 2010;75:387–91.

    PubMed  CrossRef  Google Scholar 

  93. Tabatabaei S, Saylor PJ, Coen J, Dahl DM. Prostate cancer imaging: what surgeons, radiation oncologists, and medical oncologists want to know. AJR Am J Roentgenol. 2011;196:1263–6.

    PubMed  CrossRef  Google Scholar 

  94. Mertan FV, Greer MD, Shih JH, George AK, Kongnyuy M, Muthigi A, Merino MJ, Wood BJ, Pinto PA, Choyke PL, Turkbey B. Prospective Evaluation of the Prostate Imaging Reporting and Data System Version 2 for Prostate Cancer Detection. J Urol. 2016;196:690–6.

    PubMed  CrossRef  Google Scholar 

  95. Dyke CH, Toi A, Sweet JM. Value of random ultrasound-guided transrectal prostate biopsy. Radiology. 1990;176:345–9.

    CAS  PubMed  CrossRef  Google Scholar 

  96. Ghai STA. Role of transrectal ultrasonography in prostate cancer. Radiol Clin North Am. 2012;50:1061–73.

    PubMed  CrossRef  Google Scholar 

  97. Volkin D, Turkbey B, Hoang AN, et al. Multiparametric magnetic resonance imaging (MRI) and subsequent MRI/ultrasonography fusion guided biopsy increase the detection of anteriorly located prostate cancers. BJU Int. 2014;114:E43–9.

    CAS  PubMed  CrossRef  Google Scholar 

  98. Nevoux P, Ouzzane A, Ahmed HU, et al. Quantitative tissue analyses of prostate cancer foci in an unselected cystoprostatectomy series. BJU Int. 2012;110:517–23.

    PubMed  CrossRef  Google Scholar 

  99. Marko J, Gould CF, Bonavia GH, Wolfman DJ. State-of-the-art imaging of prostate cancer. Urol Oncol. 2016;34:134–46.

    PubMed  CrossRef  Google Scholar 

  100. Brown AM, Elbuluk O, Mertan F, Sankineni S, Margolis DJ, Wood BJ, Pinto PA, Choyke PL, Turkbey B. Recent advances in image-guided targeted prostate biopsy. Abdom Imaging. 2015;40:1788–99.

    PubMed  CrossRef  Google Scholar 

  101. Barr RG. Elastography in clinical practice. Radiol Clin North Am. 2014;52:1145.

    Google Scholar 

  102. Correas J, Tissier A, Khairoune A, et al. Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology. 2015;275:280–9.

    PubMed  CrossRef  Google Scholar 

  103. Pallwein L, Mitterberger M, Pelzer A, Bartsch G, Strasser H, Pinggera GM, Aigner F, Gradl J, Zur Nedden D, Frauscher F. Ultrasound of prostate cancer: recent advances. Eur Radiol. 2008;18:707–15.

    PubMed  CrossRef  Google Scholar 

  104. Halpern EJ, Frauscher F, Rosenberg M, Gomella LG. Directed biopsy during contrast-enhanced sonography of the prostate. AJR Am J Roentgenol. 2002;178:915–9.

    PubMed  CrossRef  Google Scholar 

  105. Pinto PA, Chung PH, Rastinehad Ardeshir R, et al. Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol. 2011;186:1281–5.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  106. Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 2015;313:390–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  107. Vourganti S, Rastinehad A, Yerram NK, et al. Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies. J Urol. 2012;188:2152–7.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  108. Barchetti F, Panebianco V. Multiparametric MRI for recurrent prostate cancer post radical prostatectomy and postradiation therapy. Biomed Res Int. 2014:316272.

    Google Scholar 

  109. Turkbey B, Shah VP, Pang Y, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology. 2011;258:488–95.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  110. Berman RM, Brown AM, Chang SD, Sankineni S, Kadakia M, Wood BJ, Pinto PA, Choyke PL, Turkbey B. DCE MRI of prostate cancer. Abdom Radiol (NY). 2016;41:844–53.

    CrossRef  Google Scholar 

  111. Villers A, Puech P, Mouton D, Leroy X, Ballereau C, Lemaitre L. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol. 2006;176:2432–7.

    PubMed  CrossRef  Google Scholar 

  112. Lemaitre L, Puech P, Poncelet E, Bouye S, Leroy X, Biserte J, et al. Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol. 2009;19:470–80.

    PubMed  CrossRef  Google Scholar 

  113. Puech P, Potiron E, Lemaitre L, Leroy X, Haber GP, Crouzet S, et al. Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology. 2009;74:1094–9.

    PubMed  CrossRef  Google Scholar 

  114. Delongchamps NB, Rouanne M, Flam T, Beuvon F, Liberatore M, Zerbib M, et al. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 2011;107:1411–8.

    PubMed  CrossRef  Google Scholar 

  115. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, Margolis D, Schnall MD, Shtern F, Tempany CM, Thoeny HC, Verma S. PI-RADS prostate imaging – reporting and data system: 2015, version 2. Eur Urol. 2016;69:16–40.

    Google Scholar 

  116. Torricelli P, Barberini A, Cinquantini F, Sighinolfi M, Cesinaro AM. 3-T MRI with phased-array coil in local staging of prostatic cancer. Acad Radiol. 2008;15:1118–25.

    Google Scholar 

  117. Lourenco AP, Donegan L, Khalil H, Mainiero MB. Improving outcomes of screening breast MRI with practice evolution: initial clinical experience with 3T compared to 1.5T. J Magn Reson Imaging. 2014;39:535–9.

    PubMed  CrossRef  Google Scholar 

  118. Coakley FV, Qayyum A, Kurhanewicz J. Magnetic resonance imaging and spectroscopic imaging of prostate cancer. J Urol. 2003;170:S69–75.

    PubMed  CrossRef  Google Scholar 

  119. Testa C, Schiavina R, Lodi R, et al. Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology. 2007;244:797–806.

    PubMed  CrossRef  Google Scholar 

  120. Lim HK, Kim JK, Kim KA, Cho KS. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection – a multireader study. Radiology. 2009;250:145–51.

    Google Scholar 

  121. Brawer MK, Deering RE, Brown M, Preston SD, Bigler SA. Predictors of pathologic stage in prostatic carcinoma: the role of neovascularity. Cancer. 1994;73:678–87.

    CAS  PubMed  CrossRef  Google Scholar 

  122. Verma S, Turkbey B, Muradyan N, Rajesh A, Cornud F, Haider MA, Choyke PL, Harisinghani M. Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. AJR Am J Roentgenol. 2012;198:1277–88.

    PubMed  CrossRef  Google Scholar 

  123. Kim JK, Hong SS, Choi YJ, et al. Wash-in rate on the basis of dynamic contrast- enhanced MRI: usefulness for prostate cancer detection and localization. J Magn Reson Imaging. 2005;22:639–46.

    CAS  PubMed  CrossRef  Google Scholar 

  124. Verma S, Rajesh A. A clinically relevant approach to imaging prostate cancer: review. AJR Am J Roentgenol. 2011;196(3 Suppl):S1–10; Quiz S11–4.

    PubMed  CrossRef  Google Scholar 

  125. Bloch BN, Furman-Haran E, Helbich TH, Lenkinski RE, Degani H, Kratzik C, et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging – initial results. Radiology. 2007;245:176–85.

    Google Scholar 

  126. Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24-0.7-cm3) spatial resolution. Radiology. 1996;198:795–805.

    CAS  PubMed  CrossRef  Google Scholar 

  127. Junker D, Quentin M, Nagele U, et al. Evaluation of the PI-RADS scoring system for mpMRI of the prostate: a whole-mount step- section analysis. World J Urol. 2015;33:1023–30.

    PubMed  CrossRef  Google Scholar 

  128. Itou Y, Nakanishi K, Narumi Y, Nishizawa Y, Tsukuma H. Clinical utility of apparent diffusion coefficient (ADC) values in patients with prostate cancer: can ADC values contribute to assess the aggressiveness of prostate cancer? J Magn Reson Imaging. 2011;33:167–72.

    PubMed  CrossRef  Google Scholar 

  129. de Rooij M, Hamoen EH, Futterer JJ, Barentsz JO, Rovers MM. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. Am J Roentgenol. 2014;202:343–51.

    CrossRef  Google Scholar 

  130. Ouzzane A, Puech P, Lemaitre L, et al. Combined multiparametric MRI and targeted biopsies improve anterior prostate cancer detection, staging, and grading. Urology. 2011;78:1356–62.

    PubMed  CrossRef  Google Scholar 

  131. Villeirs GM, De Meerleer GO, DeVisschere PJ, Fonteyne VH, Verbaeys AC, Oosterlinck W. Combined magnetic resonance imaging and spectroscopy in the assessment of high grade prostate carcinoma in patients with elevated PSA: a single-institution experience of 356 patients. Eur J Radiol. 2011;77:340–5.

    PubMed  CrossRef  Google Scholar 

  132. Akin O, Hricak H. Imaging of prostate cancer. Radiol Clin North Am. 2007;45:207–22.

    PubMed  CrossRef  Google Scholar 

  133. George AK, Pinto PA, Rais-Bahrami S. Multiparametric MRI in the PSA screening era. Biomed Res Int. 2014;2014:465816.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  134. George AK, Turkbey B, Valayil SG, Muthigi A, Mertan F, Kongnyuy M, Pinto PA. A urologist’s perspective on prostate cancer imaging: past, present, and future. Abdom Radiol (NY). 2016;41:805–16.

    CrossRef  Google Scholar 

  135. Boonsirikamchai P, Choi S, Frank SJ, Ma J, Elsayes KM, Kaur H, Choi H. MR imaging of prostate cancer in radiation oncology: what radiologists need to know. Radiographics. 2013;33:741–61.

    PubMed  CrossRef  Google Scholar 

  136. Raskolnikov D, George AK, Rais-Bahrami S, et al. The role of magnetic resonance image guided prostate biopsy in stratifying men for risk of extracapsular extension at radical prostatectomy. J Urol. 2015;194:105–11.

    PubMed  CrossRef  Google Scholar 

  137. Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491–9.

    PubMed  CrossRef  Google Scholar 

  138. Zhang J, Hricak H, Shukla-Dave A, et al. Clinical stage T1c prostate cancer: evaluation with endorectal MR imaging and MR spectroscopic imaging. Radiology. 2009;253:425–34.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  139. Augustin H, Fritz GA, Ehammer T, Auprich M, Pummer K. Accuracy of 3-tesla magnetic resonance imaging for the staging of prostate cancer in comparison to the part in tables. Acta Radiol. 2009;50:562–9.

    CAS  PubMed  CrossRef  Google Scholar 

  140. Lecouvet FE, Geukens D, Stainier A, Jamar F, Jamart J, d’Othée BJ, Therasse P, Vande Berg B, Tombal B. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol. 2007;25:3281–7.

    PubMed  CrossRef  Google Scholar 

  141. Park BH, Jeon HG, Jeong BC, Seo SI, Lee HM, Choi HY, Jeon SS. Influence of magnetic resonance imaging in the decision to preserve or resect neurovascular bundles at robotic assisted laparoscopic radical prostatectomy. J Urol. 2014;192:82–8.

    PubMed  CrossRef  Google Scholar 

  142. Sciarra A, Barentsz J, Bjartell A, et al. Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur Urol. 2011;59:962–77.

    PubMed  CrossRef  Google Scholar 

  143. Grenabo Bergdahl A, Wilderäng U, Aus G, et al. Role of magnetic resonance imaging in prostate cancer screening: a pilot study within the Goteborg randomised screening trial. Eur Urol. 2016;70:566–73.

    PubMed  CrossRef  Google Scholar 

  144. Fascelli M, Rais-Bahrami S, Sankineni S, et al. Combined biparametric prostate MRI and prostate specific antigen in the detection of prostate cancer: a validation study in a biopsy naive patient population. Urology. 2016;88:125–34.

    PubMed  CrossRef  Google Scholar 

  145. Ciccarese C, Santoni M, Massari F, et al. Metabolic alterations in renal and prostate cancer. Curr Drug Metab. 2016;17:150–5.

    CAS  PubMed  CrossRef  Google Scholar 

  146. Nelson SJ, Kurhanewicz J, Vigneron DB, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci Transl Med. 2013;14:198ra108.

    Google Scholar 

  147. Kara T, Akata D, Akyol F, Karçaaltıncaba M, Özmen M. The value of dynamic contrast-enhanced MRI in the detection of recurrent prostate cancer after external beam radiotherapy: correlation with transrectal ultrasound and pathological findings. Diagn Interv Radiol. 2011;17:38–43.

    PubMed  Google Scholar 

  148. Coakley FV, Hricak H, Wefer AE, Speight JL, Kurhanewicz J, Roach M. Brachytherapy for prostate cancer: endorectal MR imaging of local treatment-related changes. Radiology. 2001;219:817–21.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Onur, M.R., Karçaaltıncaba, M. (2017). Radiological Imaging in Urological Cancers. In: Ozyigit, G., Selek, U. (eds) Principles and Practice of Urooncology. Springer, Cham. https://doi.org/10.1007/978-3-319-56114-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56114-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56113-4

  • Online ISBN: 978-3-319-56114-1

  • eBook Packages: MedicineMedicine (R0)