Skip to main content

Advanced Radiotherapy Techniques in Prostate Cancer

  • 1065 Accesses

Abstract

Prostate cancer (PC) is the most common tumor in males. Treatment options for localized prostate cancer include radical prostatectomy and radiation therapy (RT), which is delivered either as external beam radiation therapy (EBRT) or brachytherapy (BRT). According to “European Association of Urology” guidelines, although radical prostatectomy is the gold standard treatment option in localized PC, definitive RT could be an alternative treatment option in medically inoperable patients or who refused surgery. Treatment of PC has been evolving since the last decades with the innovation in technology. More precise radiotherapy (RT) techniques provides sharper isodoses while sparing organs at risk (OAR). It is also important that setup margins could be reduced with image guidance. Hence, precisely defining targets and considering organ movement are gaining much more importance. As a consequence of sharper isodoses and image guidance, dose escalation comes into question. It is well known that there is a positive correlation between RT dose and biochemical progression-free survival (BPFS) but not overall survival (OS) rates, with dose escalated conventionally fractionated up to 76–80 Gy in 2 Gy fractions, which is a biologically equivalent dose (BED1.5) of 180–200 Gy, assuming an α/β of 1.5. A recent meta-analysis clearly demonstrated an increased disease control with a BED1.5 to 200 Gy, with no additional clinical benefit with doses above 200 Gy. In order to deliver higher doses to the prostate without increasing surrounding organs at risk, it is essential to delineate target volumes properly, deliver RT with high-technology devices, immobilize patient, and track prostate during RT. The aim of this chapter is to review recent advances in prostate RT.

Keywords

  • Prostate cancer
  • Radiotherapy
  • Advanced radiotherapy techniques

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-56114-1_16
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-56114-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 16.1
Fig. 16.2
Fig. 16.3
Fig. 16.4
Fig. 16.5
Fig. 16.6
Fig. 16.7
Fig. 16.8
Fig. 16.9
Fig. 16.10
Fig. 16.11

References

  1. Viani GA, Stefano EJ, Afonso SL. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys. 2009;74(5):1405–18. doi:10.1016/j.ijrobp.2008.10.091.

    CrossRef  PubMed  Google Scholar 

  2. Zietman AL, DeSilvio ML, Slater JD, Rossi CJ Jr, Miller DW, Adams JA, et al. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA. 2005;294(10):1233–9. doi:10.1001/jama.294.10.1233.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Kuban DA, Tucker SL, Dong L, Starkschall G, Huang EH, Cheung MR, et al. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70(1):67–74. doi:10.1016/j.ijrobp.2007.06.054.

    CrossRef  PubMed  Google Scholar 

  4. Beckendorf V, Guerif S, Le Prise E, Cosset JM, Bougnoux A, Chauvet B, et al. 70Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys. 2011;80(4):1056–63. doi:10.1016/j.ijrobp.2010.03.049.

    CrossRef  PubMed  Google Scholar 

  5. Pawlowski JM, Yang ES, Malcolm AW, Coffey CW, Ding GX. Reduction of dose delivered to organs at risk in prostate cancer patients via image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2010;76(3):924–34. doi:10.1016/j.ijrobp.2009.06.068.

    CrossRef  PubMed  Google Scholar 

  6. Heemsbergen WD, Al-Mamgani A, Slot A, Dielwart MF, Lebesque JV. Long-term results of the Dutch randomized prostate cancer trial: impact of dose-escalation on local, biochemical, clinical failure, and survival. Radiother Oncol. 2014;110(1):104–9. doi:10.1016/j.radonc.2013.09.026.

    CrossRef  PubMed  Google Scholar 

  7. Tilak G, Tuncali K, Song SE, Tokuda J, Olubiyi O, Fennessy F, et al. 3T MR-guided in-bore transperineal prostate biopsy: a comparison of robotic and manual needle-guidance templates. J Magn Reson Imaging. 2015;42(1):63–71. doi:10.1002/jmri.24770.

    CrossRef  PubMed  Google Scholar 

  8. Le JD, Tan N, Shkolyar E, Lu DY, Kwan L, Marks LS, et al. Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology. Eur Urol. 2015;67(3):569–76. doi:10.1016/j.eururo.2014.08.079.

    CrossRef  PubMed  Google Scholar 

  9. Kobus T, Hambrock T, Hulsbergen-van de Kaa CA, Wright AJ, Barentsz JO, Heerschap A, et al. In vivo assessment of prostate cancer aggressiveness using magnetic resonance spectroscopic imaging at 3 T with an endorectal coil. Eur Urol. 2011;60(5):1074–80. doi:10.1016/j.eururo.2011.03.002.

    CrossRef  PubMed  Google Scholar 

  10. Watanabe Y, Nagayama M, Araki T, Terai A, Okumura A, Amoh Y, et al. Targeted biopsy based on ADC map in the detection and localization of prostate cancer: a feasibility study. J Magn Reson Imaging. 2013;37(5):1168–77. doi:10.1002/jmri.23908.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Quentin M, Schimmoller L, Arsov C, Rabenalt R, Antoch G, Albers P, et al. Increased signal intensity of prostate lesions on high b-value diffusion-weighted images as a predictive sign of malignancy. Eur Radiol. 2014;24(1):209–13. doi:10.1007/s00330-013-2999-3.

    CrossRef  PubMed  Google Scholar 

  12. Onal C, Sonmez S, Erbay G, Guler OC, Arslan G. Simultaneous integrated boost to intraprostatic lesions using different energy levels of intensity-modulated radiotherapy and volumetric-arc therapy. Br J Radiol. 2014;87(1034):20130617. doi:10.1259/bjr.20130617.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Wu LM, Xu JR, Ye YQ, Lu Q, Hu JN. The clinical value of diffusion-weighted imaging in combination with T2-weighted imaging in diagnosing prostate carcinoma: a systematic review and meta-analysis. AJR Am J Roentgenol. 2012;199(1):103–10. doi:10.2214/AJR.11.7634.

    CrossRef  PubMed  Google Scholar 

  14. Thormer G, Otto J, Horn LC, Garnov N, Do M, Franz T, et al. Non-invasive estimation of prostate cancer aggressiveness using diffusion-weighted MRI and 3D proton MR spectroscopy at 3.0 T. Acta Radiol. 2015;56(1):121–8. doi:10.1177/0284185113520311.

    CrossRef  PubMed  Google Scholar 

  15. Onal C, Guler OC, Reyhan M, Yapar AF. Prognostic value of 18F-fluorodeoxyglucose uptake in pelvic lymph nodes in patients with cervical cancer treated with definitive chemoradiotherapy. Gynecol Oncol. 2015;137(1):40–6. doi:10.1016/j.ygyno.2015.01.542.

    CrossRef  PubMed  Google Scholar 

  16. Madsen PH, Holdgaard PC, Christensen JB, Hoilund-Carlsen PF. Clinical utility of F-18 FDG PET-CT in the initial evaluation of lung cancer. Eur J Nucl Med Mol Imaging. 2016;43(11):2084–97. doi:10.1007/s00259-016-3407-4.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Engert A, Raemaekers J. Treatment of early-stage Hodgkin lymphoma. Semin Hematol. 2016;53(3):165–70. doi:10.1053/j.seminhematol.2016.05.004.

    CrossRef  PubMed  Google Scholar 

  18. Onal C, Torun N, Guler OC, Yildirim BA. Prognostic value of metabolic response measured by 18F-FDG-PET in oesophageal cancer patients treated with definitive chemoradiotherapy. Nucl Med Commun. 2016;37(12):1282–9. doi:10.1097/MNM.0000000000000594.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Onal C, Reyhan M, Parlak C, Guler OC, Oymak E. Prognostic value of pretreatment 18F-fluorodeoxyglucose uptake in patients with cervical cancer treated with definitive chemoradiotherapy. Int J Gynecol Cancer. 2013;23(6):1104–10. doi:10.1097/IGC.0b013e3182989483.

    CrossRef  PubMed  Google Scholar 

  20. Evangelista L, Briganti A, Fanti S, Joniau S, Reske S, Schiavina R, et al. New clinical indications for (18)F/(11)C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol. 2016;70(1):161–75. doi:10.1016/j.eururo.2016.01.029.

    CrossRef  PubMed  Google Scholar 

  21. Mamede M, Ceci F, Castellucci P, Schiavina R, Fuccio C, Nanni C, et al. The role of 11C-choline PET imaging in the early detection of recurrence in surgically treated prostate cancer patients with very low PSA level <0.5 ng/mL. Clin Nucl Med. 2013;38(9):e342–5. doi:10.1097/RLU.0b013e31829af913.

    CrossRef  PubMed  Google Scholar 

  22. Mease RC, Foss CA, Pomper MG. PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr Top Med Chem. 2013;13(8):951–62.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42(2):197–209. doi:10.1007/s00259-014-2949-6.

    CAS  CrossRef  PubMed  Google Scholar 

  24. Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of hybrid (6)(8)Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56(5):668–74. doi:10.2967/jnumed.115.154153.

    CrossRef  PubMed  Google Scholar 

  25. Palma D, Vollans E, James K, Nakano S, Moiseenko V, Shaffer R, et al. Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72(4):996–1001. doi:10.1016/j.ijrobp.2008.02.047.

    CrossRef  PubMed  Google Scholar 

  26. Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys. 2003;56(1):83–8.

    CrossRef  PubMed  Google Scholar 

  27. Pardo-Montero J, Fenwick JD. An approach to multiobjective optimization of rotational therapy. Med Phys. 2009;36(7):3292–303. doi:10.1118/1.3151806.

    CrossRef  PubMed  Google Scholar 

  28. Onal C, Arslan G, Parlak C, Sonmez S. Comparison of IMRT and VMAT plans with different energy levels using Monte-Carlo algorithm for prostate cancer. Jpn J Radiol. 2014;32(4):224–32. doi:10.1007/s11604-014-0291-3.

    CrossRef  PubMed  Google Scholar 

  29. Wolff D, Stieler F, Welzel G, Lorenz F, Abo-Madyan Y, Mai S, et al. Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol. 2009;93(2):226–33. doi:10.1016/j.radonc.2009.08.011.

    CrossRef  PubMed  Google Scholar 

  30. Tsai CL, Wu JK, Chao HL, Tsai YC, Cheng JC. Treatment and dosimetric advantages between VMAT, IMRT, and helical tomotherapy in prostate cancer. Med Dosim. 2011;36(3):264–71. doi:10.1016/j.meddos.2010.05.001.

    CrossRef  PubMed  Google Scholar 

  31. Chen M, Hricak H, Kalbhen CL, Kurhanewicz J, Vigneron DB, Weiss JM, et al. Hormonal ablation of prostatic cancer: effects on prostate morphology, tumor detection, and staging by endorectal coil MR imaging. AJR Am J Roentgenol. 1996;166(5):1157–63. doi:10.2214/ajr.166.5.8615261.

    CAS  CrossRef  PubMed  Google Scholar 

  32. Fonteyne V, Villeirs G, Speleers B, De Neve W, De Wagter C, Lumen N, et al. Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys. 2008;72(3):799–807. doi:10.1016/j.ijrobp.2008.01.040.

    CrossRef  PubMed  Google Scholar 

  33. Sale C, Moloney P. Dose comparisons for conformal, IMRT and VMAT prostate plans. J Med Imaging Radiat Oncol. 2011;55(6):611–21. doi:10.1111/j.1754-9485.2011.02310.x.

    CrossRef  PubMed  Google Scholar 

  34. Zhang P, Happersett L, Hunt M, Jackson A, Zelefsky M, Mageras G. Volumetric modulated arc therapy: planning and evaluation for prostate cancer cases. Int J Radiat Oncol Biol Phys. 2010;76(5):1456–62. doi:10.1016/j.ijrobp.2009.03.033.

    CrossRef  PubMed  Google Scholar 

  35. Rao M, Yang W, Chen F, Sheng K, Ye J, Mehta V, et al. Comparison of Elekta VMAT with helical tomotherapy and fixed field IMRT: plan quality, delivery efficiency and accuracy. Med Phys. 2010;37(3):1350–9. doi:10.1118/1.3326965.

    CrossRef  PubMed  Google Scholar 

  36. Hardcastle N, Tome WA, Foo K, Miller A, Carolan M, Metcalfe P. Comparison of prostate IMRT and VMAT biologically optimised treatment plans. Med Dosim. 2011;36(3):292–8. doi:10.1016/j.meddos.2010.06.001.

    CrossRef  PubMed  Google Scholar 

  37. Sze HC, Lee MC, Hung WM, Yau TK, Lee AW. RapidArc radiotherapy planning for prostate cancer: single-arc and double-arc techniques vs. intensity-modulated radiotherapy. Med Dosim. 2012;37(1):87–91. doi:10.1016/j.meddos.2011.01.005.

    CrossRef  PubMed  Google Scholar 

  38. Fontenot JD, King ML, Johnson SA, Wood CG, Price MJ, Lo KK. Single-arc volumetric-modulated arc therapy can provide dose distributions equivalent to fixed-beam intensity-modulated radiation therapy for prostatic irradiation with seminal vesicle and/or lymph node involvement. Br J Radiol. 2012;85(1011):231–6. doi:10.1259/bjr/94843998.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Yildirim BA, Onal C, Dolek Y. Is it essential to use fiducial markers during cone-beam CT-based radiotherapy for prostate cancer patients? Jpn J Radiol. 2017;35(1):3–9. doi:10.1007/s11604-016-0590-y.

    CAS  CrossRef  PubMed  Google Scholar 

  40. Onal C, Topkan E, Efe E, Yavuz M, Arslan G, Yavuz A. The effect of concurrent androgen deprivation and 3D conformal radiotherapy on prostate volume and clinical organ doses during treatment for prostate cancer. Br J Radiol. 2009;82(984):1019–26. doi:10.1259/bjr/65939531.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Gregoire V, Mackie TR. State of the art on dose prescription, reporting and recording in intensity-modulated radiation therapy (ICRU report no. 83). Cancer Radiother. 2011;15(6–7):555–9. doi:10.1016/j.canrad.2011.04.003.

    CAS  CrossRef  PubMed  Google Scholar 

  42. Cellini N, Morganti AG, Mattiucci GC, Valentini V, Leone M, Luzi S, et al. Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. Int J Radiat Oncol Biol Phys. 2002;53(3):595–9.

    CrossRef  PubMed  Google Scholar 

  43. Geier M, Astner ST, Duma MN, Jacob V, Nieder C, Putzhammer J, et al. Dose-escalated simultaneous integrated-boost treatment of prostate cancer patients via helical tomotherapy. Strahlenther Onkol. 2012;188(5):410–6. doi:10.1007/s00066-012-0081-8.

    CAS  CrossRef  PubMed  Google Scholar 

  44. Morgan PB, Hanlon AL, Horwitz EM, Buyyounouski MK, Uzzo RG, Pollack A. Radiation dose and late failures in prostate cancer. Int J Radiat Oncol Biol Phys. 2007;67(4):1074–81. doi:10.1016/j.ijrobp.2006.10.023.

    CrossRef  PubMed  Google Scholar 

  45. Ishii K, Ogino R, Okada W, Nakahara R, Kawamorita R, Nakajima T. A dosimetric comparison of RapidArc and IMRT with hypofractionated simultaneous integrated boost to the prostate for treatment of prostate cancer. Br J Radiol. 2013;86(1030):20130199. doi:10.1259/bjr.20130199.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  46. Ost P, Speleers B, De Meerleer G, De Neve W, Fonteyne V, Villeirs G, et al. Volumetric arc therapy and intensity-modulated radiotherapy for primary prostate radiotherapy with simultaneous integrated boost to intraprostatic lesion with 6 and 18 MV: a planning comparison study. Int J Radiat Oncol Biol Phys. 2011;79(3):920–6. doi:10.1016/j.ijrobp.2010.04.025.

    CrossRef  PubMed  Google Scholar 

  47. Pinkawa M, Attieh C, Piroth MD, Holy R, Nussen S, Klotz J, et al. Dose-escalation using intensity-modulated radiotherapy for prostate cancer—evaluation of the dose distribution with and without 18F-choline PET-CT detected simultaneous integrated boost. Radiother Oncol. 2009;93(2):213–9. doi:10.1016/j.radonc.2009.07.014.

    CAS  CrossRef  PubMed  Google Scholar 

  48. von Eyben FE, Kiljunen T, Kangasmaki A, Kairemo K, von Eyben R, Joensuu T. Radiotherapy boost for the dominant intraprostatic cancer lesion-a systematic review and meta-analysis. Clin Genitourin Cancer. 2016;14(3):189–97. doi:10.1016/j.clgc.2015.12.005.

    CrossRef  Google Scholar 

  49. Lips IM, van der Heide UA, Haustermans K, van Lin EN, Pos F, Franken SP, et al. Single blind randomized phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial. Trials. 2011;12:255. doi:10.1186/1745-6215-12-255.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Fowler JF, Ritter MA, Chappell RJ, Brenner DJ. What hypofractionated protocols should be tested for prostate cancer? Int J Radiat Oncol Biol Phys. 2003;56(4):1093–104.

    CrossRef  PubMed  Google Scholar 

  51. Lee WR. Extreme hypofractionation for prostate cancer. Expert Rev Anticancer Ther. 2009;9(1):61–5. doi:10.1586/14737140.9.1.61.

    CAS  CrossRef  PubMed  Google Scholar 

  52. Magnuson WJ, Mahal A, Yu JB. Emerging technologies and techniques in radiation therapy. Semin Radiat Oncol. 2017;27(1):34–42. doi:10.1016/j.semradonc.2016.08.004.

    CrossRef  PubMed  Google Scholar 

  53. Pollack A, Walker G, Horwitz EM, Price R, Feigenberg S, Konski AA, et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol. 2013;31(31):3860–8. doi:10.1200/JCO.2013.51.1972.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  54. Zumsteg ZS, Spratt DE, Romesser PB, Pei X, Zhang Z, Kollmeier M, et al. Anatomical patterns of recurrence following biochemical relapse in the dose escalation era of external beam radiotherapy for prostate cancer. J Urol. 2015;194(6):1624–30. doi:10.1016/j.juro.2015.06.100.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  55. QJ W, Li T, Yuan L, Yin FF, Lee WR. Single institution’s dosimetry and IGRT analysis of prostate SBRT. Radiat Oncol. 2013;8:215. doi:10.1186/1748-717X-8-215.

    CrossRef  Google Scholar 

  56. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 2014;65(1):124–37. doi:10.1016/j.eururo.2013.09.046.

    CrossRef  PubMed  Google Scholar 

  57. Mendenhall NP, Hoppe BS, Nichols RC, Mendenhall WM, Morris CG, Li Z, et al. Five-year outcomes from 3 prospective trials of image-guided proton therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2014;88(3):596–602. doi:10.1016/j.ijrobp.2013.11.007.

    CrossRef  PubMed  Google Scholar 

  58. Grimm P, Billiet I, Bostwick D, Dicker AP, Frank S, Immerzeel J, et al. Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the prostate cancer results study group. BJU Int. 2012;109(Suppl 1):22–9. doi:10.1111/j.1464-410X.2011.10827.x.

    CrossRef  PubMed  Google Scholar 

  59. Slater JD, Rossi CJ Jr, Yonemoto LT, Bush DA, Jabola BR, Levy RP, et al. Proton therapy for prostate cancer: the initial Loma Linda University experience. Int J Radiat Oncol Biol Phys. 2004;59(2):348–52. doi:10.1016/j.ijrobp.2003.10.011.

    CrossRef  PubMed  Google Scholar 

  60. Shipley WU, Verhey LJ, Munzenrider JE, Suit HD, Urie MM, McManus PL, et al. Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone. Int J Radiat Oncol Biol Phys. 1995;32(1):3–12. doi:10.1016/0360-3016(95)00063-5.

    CAS  CrossRef  PubMed  Google Scholar 

  61. Yonemoto LT, Slater JD, Rossi CJ Jr, Antoine JE, Loredo L, Archambeau JO, et al. Combined proton and photon conformal radiation therapy for locally advanced carcinoma of the prostate: preliminary results of a phase I/II study. Int J Radiat Oncol Biol Phys. 1997;37(1):21–9.

    CAS  CrossRef  PubMed  Google Scholar 

  62. Bryant C, Smith TL, Henderson RH, Hoppe BS, Mendenhall WM, Nichols RC, et al. Five-year biochemical results, toxicity, and patient-reported quality of life after delivery of dose-escalated image guided proton therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2016;95(1):422–34. doi:10.1016/j.ijrobp.2016.02.038.

    CrossRef  PubMed  Google Scholar 

  63. Giannarini G, Gandaglia G, Montorsi F, Briganti A. Will focal therapy remain only an attractive illusion for the primary treatment of prostate cancer? J Clin Oncol. 2014;32(13):1299–301. doi:10.1200/JCO.2013.54.8214.

    CrossRef  PubMed  Google Scholar 

  64. Bahn D, de Castro Abreu AL, Gill IS, Hung AJ, Silverman P, Gross ME, et al. Focal cryotherapy for clinically unilateral, low-intermediate risk prostate cancer in 73 men with a median follow-up of 3.7 years. Eur Urol. 2012;62(1):55–63. doi:10.1016/j.eururo.2012.03.006.

    CrossRef  PubMed  Google Scholar 

  65. Duijzentkunst DA, Peters M, van der Voort van Zyp JR, Moerland MA, van Vulpen M. Focal salvage therapy for local prostate cancer recurrences after primary radiotherapy: a comprehensive review. World J Urol. 2016;34(11):1521–31. doi:10.1007/s00345-016-1811-9.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  66. Chin JL. Editorial comment. J Urol. 2013;190(2):710. doi:10.1016/j.juro.2013.02.3238.

    CrossRef  PubMed  Google Scholar 

  67. Gardner TA. Editorial comment. J Urol. 2013;190(2):710. doi:10.1016/j.juro.2013.02.3239.

    CrossRef  PubMed  Google Scholar 

  68. Koch MO, Gardner T, Cheng L, Fedewa RJ, Seip R, Sanghvi NT. Phase I/II trial of high intensity focused ultrasound for the treatment of previously untreated localized prostate cancer. J Urol. 2007;178(6):2366–70; discussion 70–1. doi:10.1016/j.juro.2007.08.014.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Onal M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Onal, C., Guler, O.C. (2017). Advanced Radiotherapy Techniques in Prostate Cancer. In: Ozyigit, G., Selek, U. (eds) Principles and Practice of Urooncology. Springer, Cham. https://doi.org/10.1007/978-3-319-56114-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56114-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56113-4

  • Online ISBN: 978-3-319-56114-1

  • eBook Packages: MedicineMedicine (R0)