Skip to main content

Prostate Cancer Risk Grouping and Selection Criteria Based on Radiation Oncology Perspective

  • 1025 Accesses

Abstract

Since many decades, TNM staging has been widely used for almost all the cancer-diagnosed cases, to ensure the common language among the literature and medicine, but specifically to prostate cancer, treatment decisions have been more driven by diagnostic findings such as pretreatment PSA , age, biopsy-based Gleason score, and treatment options as well as the TNM staging. The management of prostate cancer includes a variety of approaches starting from active surveillance for very early stage. Intermediate stages could be treated with either surgery, radiotherapy, or brachytherapy with definitive intent. More locally advanced stages need combination of hormonal treatment with radiotherapy and/or surgery. Following the several published surgical nomograms to differentiate the patients more suitable for surgery, various attempts to provide probability graphs, nomograms, lookup tables, and neural networks were published and also validated by various groups in order to clarify the heterogeneity among groups and to distinguish patient selections between surgery, external beam therapy, brachytherapy, and hormonal therapy. Among the published, more than 20 nomograms, NCCN, TNM, and D’Amico groupings are the well-known and mostly used evaluation systems. The traditional three-group and new five-group risk stratifications and the new prostate grade grouping 1–5 will be in use to predict the risk of PSA recurrence following surgery and radiotherapy. The aim of this chapter is to provide a scope on these nomograms and comparison to each other in clinical practice.

Keywords

  • Prostate cancer
  • Risk groupings
  • Nomograms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-56114-1_11
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-56114-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2

References

  1. Rodrigues G, Lukka H, Warde P, Brundage M, Souhami L, Crook J, Cury F, Catton C, Mok G, Martin AG, et al. The prostate cancer risk stratification project: database construction and risk stratification outcome analysis. J Natl Compr Cancer Netw. 2014;12(1):60–9.

    CrossRef  Google Scholar 

  2. Kattan MW, Eastham JA, Wheeler TM, Maru N, Scardino PT, Erbersdobler A, Graefen M, Huland H, Koh H, Shariat S, et al. Counseling men with prostate cancer: a nomogram for predicting the presence of small, moderately differentiated, confined tumors. J Urol. 2003;170(5):1792–7.

    CrossRef  PubMed  Google Scholar 

  3. AJCC. Cancer staging handbook. 7th ed. Chicago, IL: American Joint Committee on Cancer; 2010.

    Google Scholar 

  4. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol. 2016;40(2):244–52.

    PubMed  Google Scholar 

  5. Loeb S, Folkvaljon Y, Robinson D, Lissbrant IF, Egevad L, Stattin P. Evaluation of the 2015 Gleason Grade Groups in a Nationwide Population-based Cohort. Eur Urol. 2016;69(6):1135–41.

    CrossRef  PubMed  Google Scholar 

  6. Rubin MA, Girelli G, Demichelis F. Genomic correlates to the newly proposed grading prognostic groups for prostate cancer. Eur Urol. 2016;69(4):557–60.

    CrossRef  PubMed  Google Scholar 

  7. Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi C, Vickers AJ, Parwani AV, Reuter VE, Fine SW, et al. A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol. 2016;69(3):428–35.

    CrossRef  PubMed  Google Scholar 

  8. Aizer AA, Paly JJ, Efstathiou JA. Multidisciplinary care and management selection in prostate cancer. Semin Radiat Oncol. 2013;23(3):157–64.

    CrossRef  PubMed  Google Scholar 

  9. Markowski MC, Carducci MA. Early use of chemotherapy in metastatic prostate cancer. Cancer Treat Rev. 2016. doi:10.1016/j.ctrv.2016.09.017.

  10. Crook J, Ots AF. Prognostic factors for newly diagnosed prostate cancer and their role in treatment selection. Semin Radiat Oncol. 2013;23(3):165–72.

    CrossRef  PubMed  Google Scholar 

  11. Carthon BC, Antonarakis ES. The STAMPEDE trial: paradigm-changing data through innovative trial design. Transl Cancer Res. 2016;5(3 Suppl):S485–90.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. D’Amico AV, Renshaw AA, Sussman B, Chen MH. Pretreatment PSA velocity and risk of death from prostate cancer following external beam radiation therapy. JAMA. 2005;294(4):440–7.

    CrossRef  PubMed  Google Scholar 

  13. Lotan Y, Shariat SF, Khoddami SM, Saboorian H, Koeneman KS, Cadeddu JA, Sagalowsky AI, McConnell JD, Roehrborn CG. The percent of biopsy cores positive for cancer is a predictor of advanced pathological stage and poor clinical outcomes in patients treated with radical prostatectomy. J Urol. 2004;171(6 Pt 1):2209–14.

    CrossRef  PubMed  Google Scholar 

  14. Freedland SJ, Aronson WJ, Terris MK, Kane CJ, Amling CL, Dorey F, Presti JC Jr. Percent of prostate needle biopsy cores with cancer is significant independent predictor of prostate specific antigen recurrence following radical prostatectomy: results from SEARCH database. J Urol. 2003;169(6):2136–41.

    CrossRef  PubMed  Google Scholar 

  15. Lee JT, Lee S, Yun CJ, Jeon BJ, Kim JM, Ha HK, Lee W, Chung MK. Prediction of perineural invasion and its prognostic value in patients with prostate cancer. Korean J Urol. 2010;51(11):745–51.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Patel AA, Chen MH, Renshaw AA, D’Amico AV. PSA failure following definitive treatment of prostate cancer having biopsy Gleason score 7 with tertiary grade 5. JAMA. 2007;298(13):1533–8.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Aus G, Abbou CC, Bolla M, Heidenreich A, Schmid HP, van Poppel H, Wolff J, Zattoni F. EAU guidelines on prostate cancer. Eur Urol. 2005;48(4):546–51.

    CAS  CrossRef  PubMed  Google Scholar 

  18. D’Amico AV, Whittington R, Malkowicz S, et al. BIochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280(11):969–74.

    CrossRef  PubMed  Google Scholar 

  19. Sebo TJ, Cheville JC, Riehle DL, Lohse CM, Pankratz VS, Myers RP, Blute ML, Zincke H. Predicting prostate carcinoma volume and stage at radical prostatectomy by assessing needle biopsy specimens for percent surface area and cores positive for carcinoma, perineural invasion, Gleason score, DNA ploidy and proliferation, and preoperative serum prostate specific antigen: a report of 454 cases. Cancer. 2001;91(11):2196–204.

    CAS  CrossRef  PubMed  Google Scholar 

  20. Kattan MW, Zelefsky MJ, Kupelian PA, Scardino PT, Fuks Z, Leibel SA. Pretreatment nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer. J Clin Oncol. 2000;18(19):3352–9.

    CAS  CrossRef  PubMed  Google Scholar 

  21. Eifler JB, Feng Z, Lin BM, Partin MT, Humphreys EB, Han M, Epstein JI, Walsh PC, Trock BJ, Partin AW. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 2013;111(1):22–9.

    CrossRef  PubMed  Google Scholar 

  22. Gnanapragasam VJ, Lophatananon A, Wright KA, Muir KR, Gavin A, Greenberg DC. Improving clinical risk stratification at diagnosis in primary prostate cancer: a prognostic modelling study. PLoS Med. 2016;13(8):e1002063.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Kirby R. The role of PSA in detection and management of prostate cancer. Practitioner. 2016;260(1792):17–21, 3.

    Google Scholar 

  24. Dinnes J, Hewison J, Altman DG, Deeks JJ. The basis for monitoring strategies in clinical guidelines: a case study of prostate-specific antigen for monitoring in prostate cancer. CMAJ. 2012;184(2):169–77.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Kim JS, Ryu J-G, Kim JW, Hwang EC, Jung SI, Kang TW, Kwon D, Park K. Prostate-specific antigen fluctuation: what does it mean in diagnosis of prostate cancer? Int Braz J Urol. 2015;41(2):258–64.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Partin AW, Kattan MW, Subong EN, Walsh PC, Wojno KJ, Oesterling JE, Scardino PT, Pearson JD. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA. 1997;277(18):1445–51.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Roach M, Lu J, Pilepich MV, Asbell SO, Mohiuddin M, Terry R, Grignon D. Four prognostic groups predict long-term survival from prostate cancer following radiotherapy alone on Radiation Therapy Oncology Group clinical trials. Int J Radiat Oncol Biol Phys. 2000;47(3):609–15.

    CAS  CrossRef  PubMed  Google Scholar 

  28. Pierorazio PM, Walsh PC, Partin AW, Epstein JI. Prognostic Gleason grade grouping: data based on the modified Gleason scoring system. BJU Int. 2013;111(5):753–60.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Gordetsky J, Epstein J. Grading of prostatic adenocarcinoma: current state and prognostic implications. Diagn Pathol. 2016;11:25.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Roach M 3rd, Lu J, Pilepich MV, Asbell SO, Mohiuddin M, Terry R, Grignon D. Long-term survival after radiotherapy alone: radiation therapy oncology group prostate cancer trials. J Urol. 1999;161(3):864–8.

    CrossRef  PubMed  Google Scholar 

  31. Lee HW, Seo SI, Jeon SS, Lee HM, Choi HY. Can we predict real T3 stage prostate cancer in patients with clinical T3 (cT3) disease before radical prostatectomy? Yonsei Med J. 2010;51(5):700–7.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Bonekamp D, Jacobs MA, El-Khouli R, Stoianovici D, Macura KJ. Advancements in MR imaging of the prostate: from diagnosis to interventions. Radiographics. 2011;31(3):677–703.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Yoo S, Kim JK, Jeong IG. Multiparametric magnetic resonance imaging for prostate cancer: a review and update for urologists. Korean J Urol. 2015;56(7):487–97.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Stephenson AJ, Scardino PT, Eastham JA, Bianco FJ, Dotan ZA, Fearn PA, Kattan MW. Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Natl Cancer Inst. 2006;98(10):715–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Brockman JA, Alanee S, Vickers AJ, Scardino PT, Wood DP, Kibel AS, Lin DW, Bianco FJ, Rabah DM, Klein EA, et al. Nomogram predicting prostate cancer–specific mortality for men with biochemical recurrence after radical prostatectomy. Eur Urol. 2015;67(6):1160–7.

    CrossRef  PubMed  Google Scholar 

  36. Dorin RP, Daneshmand S, Lassoff MA, Cai J, Skinner DG, Lieskovsky G. Long-term outcomes of open radical retropubic prostatectomy for clinically localized prostate cancer in the prostate-specific antigen era. Urology. 2012;79(3):626–31.

    CrossRef  PubMed  Google Scholar 

  37. Lukka H, Warde P, Pickles T, Morton G, Brundage M, Souhami L. Controversies in prostate cancer radiotherapy: consensus development. Can J Urol. 2001;8(4):1314–22.

    CAS  PubMed  Google Scholar 

  38. Rodrigues G, Lukka H, Warde P, Brundage M, Souhami L, Crook J, Cury F, Catton C, Mok G, Martin AG, et al. The prostate cancer risk stratification (ProCaRS) project: recursive partitioning risk stratification analysis. Radiother Oncol. 2013;109(2):204–10.

    CrossRef  PubMed  Google Scholar 

  39. Gabriele D, Jereczek-Fossa BA, Krengli M, Garibaldi E, Tessa M, Moro G, Girelli G, Gabriele P, EUREKA-2 Consortium. Beyond D’Amico risk classes for predicting recurrence after external beam radiotherapy for prostate cancer: the Candiolo classifier. Radiat Oncol. 2016;11:23.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Roach M 3rd, Weinberg V, Sandler H, Thompson I. Staging for prostate cancer: time to incorporate pretreatment prostate-specific antigen and Gleason score? Cancer. 2007;109(2):213–20.

    CrossRef  PubMed  Google Scholar 

  41. Kimura T, Onozawa M, Miyazaki J, Kawai K, Nishiyama H, Hinotsu S, Akaza H. Validation of the prognostic grouping of the seventh edition of the tumor-nodes-metastasis classification using a large-scale prospective cohort study database of prostate cancer treated with primary androgen deprivation therapy. Int J Urol. 2013;20(9):880–8.

    CAS  CrossRef  PubMed  Google Scholar 

  42. Williams SG, Duchesne GM, Gogna NK, Millar JL, Pickles T, Pratt GR, Turner S. An international multicenter study evaluating the impact of an alternative biochemical failure definition on the judgment of prostate cancer risk. Int J Radiat Oncol Biol Phys. 2006;65(2):351–7.

    CrossRef  PubMed  Google Scholar 

  43. Beasley M, Williams SG, Pickles T. Expanded risk groups help determine which prostate radiotherapy sub-group may benefit from adjuvant androgen deprivation therapy. Radiat Oncol. 2008;3:8.

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Bolukbasi M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bolukbasi, Y., Sezen, D., Selek, U. (2017). Prostate Cancer Risk Grouping and Selection Criteria Based on Radiation Oncology Perspective. In: Ozyigit, G., Selek, U. (eds) Principles and Practice of Urooncology. Springer, Cham. https://doi.org/10.1007/978-3-319-56114-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56114-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56113-4

  • Online ISBN: 978-3-319-56114-1

  • eBook Packages: MedicineMedicine (R0)