Skip to main content

Histopathological Evaluation in Prostate Cancer

  • 1039 Accesses

Abstract

Prostate cancer (Pca) is one of the most common cancers diagnosed in men. Despite its prevalence, healthcare providers dealing with the disease still face challenges ranging from screening, diagnosis, to selection of patients for treatment and development of resistance to therapy. Over the years, with wide acceptance of screening practices, specifically with the use of serum PSA assays, the composition of the cohort of men who are newly diagnosed with prostate cancer (Pca) shifted from symptomatic men with clinically advanced disease to men where the diagnosis is based on a few neoplastic glands on a needle core biopsy. While histopathologic features of Pca have been well established, diagnosis of cancer on a limited number of neoplastic glands has presented new challenges. In this chapter we will review some of the diagnostic challenges as well as recent updates in grading and other pathologic parameters that aid management decisions.

Keywords

  • Prostate cancer
  • Pathology
  • Gleason score
  • Diagnosis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-56114-1_10
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-56114-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6
Fig. 10.7
Fig. 10.8

References

  1. Hodge KK, McNeal JE, Terris MK, et al. Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol. 1989;142:71–4.

    CAS  CrossRef  PubMed  Google Scholar 

  2. Valerio M, Donaldson I, Emberton M, et al. Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review. Eur Urol. 2015;68(1):8–19. doi:10.1016/j.eururo.2014.10.026.

    CrossRef  PubMed  Google Scholar 

  3. Garcia JJ, Al-Ahmedie HA, Gopalan A, et al. Do prostatic transition zone tumors have a distinct morphology? Am J Surg Pathol. 2008;32:1709–14.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Al-Ahmedie HA, Tickoo SK, Olgac S, et al. Anterior predominant prostatic tumors: zone of origin and pathologic outcomes at radical prostatectomy. Am J Surg Pathol. 2008;32:229–35.

    CrossRef  Google Scholar 

  5. Schweizer MT, Cheng HH, Tretiakova MS, et al. Mismatch repair deficiency may be common in ductal adenocarcinoma of the prostate. Oncotarget. 2016;7(50):82504–10.

    Google Scholar 

  6. Gleason DF. Classification of prostatic carcinomas. Cancer Chemother Rep. 1966;50(3):125–8.

    CAS  PubMed  Google Scholar 

  7. Mellinger GT, Gleason D, Bailar J III. The histology and prognosis of prostate cancer. J Urol. 1967;97:331–7.

    CAS  CrossRef  PubMed  Google Scholar 

  8. Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol. 1974;11:58–64.

    CrossRef  Google Scholar 

  9. Mellinger GT. Prognosis of prostatic carcinoma. Recent Results Cancer Res. 1977;60:61–72.

    CrossRef  Google Scholar 

  10. Epstein JI, Allsbrook WC Jr, Amin MB, et al. ISUP grading committee. The 2005 international society of urological pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2005;29:1228–42.

    CrossRef  PubMed  Google Scholar 

  11. Epstein JI, Egavad L, Amin MB, et al. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic adenocarcinoma. Definition of grading patterns and proposal for a new grading system. Am J Surg Pathol. 2016;40(2):244–52.

    PubMed  Google Scholar 

  12. Kweldam CF, Wildhagen MF, Steyerberg EW, et al. Cribriform growth is highly predictive for postoperative metastasis and disease-specific death in Gleason score 7 prostate cancer. Mod Pathol. 2015;28:457–64.

    CrossRef  PubMed  Google Scholar 

  13. Dong F, Yang P, Wang C, et al. Architectural heterogeneity and cribriform pattern predict adverse clinical outcome for Gleason grade 4 prostatic adenocarcinoma. Am J Surg Pathol. 2013 Dec;37(12):1855–61.

    CrossRef  PubMed  Google Scholar 

  14. Zhou M, Shah RB. Recent advances in prostate cancer pathology: Gleason grading and beyond. Pathol Int. 2016;66:260–72.

    CrossRef  PubMed  Google Scholar 

  15. McKenney JK, Simko J, Bonham M, et al. The potential impact of reproducibility of Gleason grading in men with early stage prostate cancer managed by active surveillance: a multi-institutional study. J Urol. 2011 Aug;186(2):465–9.

    CrossRef  PubMed  Google Scholar 

  16. Kweldam CF, Nieboer D, Algaba F, et al. Gleason grade 4 prostate adenocarcinoma patterns: an interobserver agreement study among genitourinary pathologists. Histopathology. 2016 Sep;69(3):441–9.

    CrossRef  PubMed  Google Scholar 

  17. McKenney JK, Wei W, Hawley S, et al. Histologic grading of prostatic adenocarcinoma can be further optimized. Analysis of the relative prognostic strength of individual architectural patterns in 1275 patients from the Canary Retrospective Cohort. Am J Surg Pathol. 2016;40(11):1439–56.

    CrossRef  PubMed  Google Scholar 

  18. Arias-Stella III, Shah AB, Montoya-Cerrillo D, et al. Prostate biopsy and radical prostatectomy Gleason score correlation in heterogeneous tumors. Proposal for a composite Gleason score. Am J Surg Pathol. 2015;39(9):1213–8.

    CrossRef  PubMed  Google Scholar 

  19. Osunkaya AO, Nielsen ME, Epstein JI. Prognosis of mucinous adenocarcinoma of the prostate treated by radical prostatectomy: a study of 47 cases. Am J Surg Pathol. 2008;32(3):468–72.

    CrossRef  Google Scholar 

  20. Kovi J, Jackson MA, Heshmat MY. Ductal spread in prostatic carcinoma. Cancer. 1985;56(7):1566–73.

    CAS  CrossRef  PubMed  Google Scholar 

  21. McNeal JE, Yemoto CE. Spread of adenocarcinoma within prostatic ducts and acini. Morphologic and clinical correlations. Am J Surg Pathol. 1996;20(7):802–14.

    CAS  CrossRef  PubMed  Google Scholar 

  22. Guo CC, Epstein JI. Intraductal carcinoma of the prostate on needle biopsy: histologic features and clinical significance. Mod Pathol. 2006;19(12):1528–35.

    CrossRef  PubMed  Google Scholar 

  23. Kimura K, Tsuzuki T, Kato M, et al. Prognostic value of intraductal carcinoma of the prostate in radical prostatectomy specimens. Prostate. 2014;74(6):680–7.

    CrossRef  PubMed  Google Scholar 

  24. Kato M, Kimura K, Hirakawa A, et al. The presence of intraductal carcinoma of the prostate in needle biopsy is a significant prognostic factor for prostate cancer patients with distant metastasis at initial presentation. Mod Pathol. 2016;29(2):166–73.

    CAS  CrossRef  PubMed  Google Scholar 

  25. Mosse CA, Magi-Galluzzi C, Tsuzuki T, et al. The prognostic significance of tertiary Gleason pattern 5 in radical prostatectomy specimens. Am J Surg Pathol. 2004;28(3):394–8.

    CrossRef  PubMed  Google Scholar 

  26. Chan TY, Partin AW, Walsh PC, et al. Prognostic significance of Gleason score 3+4 versus Gleason score 4+3 tumor at radical prostatectomy. Urology. 2000;56:823–7.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Wright JL, Salinas CA, Lin DW, et al. Prostate cancer specific mortality and Gleason 7 disease differences in prostate cancer outcomes between cases with Gleason 4+3 and Gleason 3+4 tumors in a population based cohort. J Urol. 2009;182:2702–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Zumsteg ZS, Spratt DE, Pei I, et al. A new risk classification system for therapeutic decision making with intermediate-risk prostate cancer patients undergoing dose-escalated external-beam radiation therapy. Eur Urol. 2013;64(6):895–902. doi:10.1016/j.eururo.2013.03.033.

    CrossRef  PubMed  Google Scholar 

  29. Moch H, Humphrey PA, Ulbright TM, Reuter V. WHO classification of tumours of the urinary system and male genital organs. Lyon, France: International Agency for Research on Cancer; 2016.

    Google Scholar 

  30. Ji E, Zelefsky MJ, Sjoberg D, et al. A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol. 2016;69(3):428–35.

    CrossRef  Google Scholar 

  31. Stamey TA, McNeal JE, Yemoto CM, et al. Biological determinants of cancer progression in men with prostate cancer. JAMA. 1999;281:1395–400.

    CAS  CrossRef  PubMed  Google Scholar 

  32. Humphrey PA, Vollmer RT. Intraglandular tumor extent and prognosis in prostatic carcinoma: application of a grid method to prostatectomy specimens. Hum Pathol. 1990;21:799–804.

    CAS  CrossRef  PubMed  Google Scholar 

  33. Epstein JI. Prognostic significance of tumor volume in radical prostatectomy and needle biopsy specimens. J Urol. 2011;186:790–7.

    CrossRef  PubMed  Google Scholar 

  34. van der Kwast TH, Amin MB, Billis A, et al. International Society of Urologic Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 2: T2 substaging and prostate cancer volume. Mod Pathol. 2011;24:16–25.

    CrossRef  PubMed  Google Scholar 

  35. Karram S, Trock BJ, Netto GJ, Epstein JI. Should intervening benign tissue be included in the measurement of discontinuous foci of cancer on prostate needle biopsy? Correlation with radical prostatectomy findings. Am J Surg Pathol. 2011;35:1351–5.

    CrossRef  PubMed  Google Scholar 

  36. Epstein JI. Prognostic significance of tumor volume in radical prostatectomy and needle biopsy specimens. J Urol. 2011;186:790–7.

    CrossRef  PubMed  Google Scholar 

  37. Quintal MM, Meirelles LR, Freitas LL, et al. Various morphometric measurements of cancer extent on needle prostate biopsies: which is predictive of pathologic stage and biochemical recurrence following radical prostatectomy? Int Urol Nephrol. 2011;43(3):697–705. doi:10.1007/s11255-011-9901-5.

    CrossRef  PubMed  Google Scholar 

  38. Magi-Galuzzi C, et al. International Society of Urologic Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 3: extraprostatic extension, lymphovascular invasion and locally advanced disease. Mod Pathol. 2011;24:36–8.

    Google Scholar 

  39. Berney DM, et al. International Society of Urologic Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 4: seminal vesicles and lymph nodes. Mod Pathol. 2011;24:39–47.

    CrossRef  PubMed  Google Scholar 

  40. Soh S, Arakawa A, Suyama K, et al. The prognosis of patients with seminal vesicle involvement depends upon the level of extraprostatic extension. J Urol. 1998;296A:159.

    Google Scholar 

  41. Tan PH, Cheng L, Srigley JR, et al. International Society of Urologic Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 5: surgical margins. Mod Pathol. 2011;24:48–57.

    CrossRef  PubMed  Google Scholar 

  42. Alkhateeb S, Alibhai S, Fleshner N, et al. Impact of positive surgical margins after radical prostatectomy differs by disease risk group. J Urol. 2010;183:145–50.

    CrossRef  PubMed  Google Scholar 

  43. Wright JL, Dalkin BL, True LD, et al. Positive surgical margins at radical prostatectomy predict prostate cancer specific mortality. J Urol. 2010;183:2213–8.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Chalfin HJ, et al. Impact of surgical margin status on prostate-cancer-specific mortality. BJU Int. 2012;110:1684–9.

    CrossRef  PubMed  Google Scholar 

  45. Sooriakumaran P, Dev HS, Skarecky D, Ahlering T. The importance of surgical margins in prostate cancer. J Surg Oncol. 2016;113:310–5.

    CrossRef  PubMed  Google Scholar 

  46. Aydin H, Tsuzuki T, Hernandez D, et al. Positive proximal (bladder neck) margin at radical prostatectomy confers greater risk of biochemical progression. Urology. 2004;64:551–5.

    CrossRef  PubMed  Google Scholar 

  47. Pettus JA, Weight CJ, Thompson CJ, et al. Biochemical failure in men following radical retropubic prostatectomy: impact of surgical margin status and location. J Urol. 2004;172:129–32.

    CrossRef  PubMed  Google Scholar 

  48. Smith JA Jr, Chan RC, Chang SS, et al. A comparison of the incidence and location of positive surgical margins in robotic assisted laparoscopic radical prostatectomy and open retropubic radical prostatectomy. J Urol. 2007;178:2385–9.

    CrossRef  PubMed  Google Scholar 

  49. Izard JP, True LD, May P, et al. Prostate cancer that is within 0.1 mm of the surgical margin of a radical prostatectomy predicts greater likelihood of recurrence. Am J Surg Pathol. 2014;38(3):333–8.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Lu J, Wirth GJ, Wu S, et al. A close surgical margin after radical prostatectomy is an independent predictor of recurrence. J Urol. 2012;188(1):91–7.

    CrossRef  PubMed  Google Scholar 

  51. Epstein JI, Sauvageot J. Do close but negative margins in radical prostatectomy specimens increase the risk of postoperative progression? J Urol. 1997;157:241–3.

    CAS  CrossRef  PubMed  Google Scholar 

  52. Epstein JI, Partin AW, Sauvageot J, et al. Prediction of progression following radical prostatectomy. A multi-variate analysis of 721 men with long-term follow-up. Am J Surg Pathol. 1996;20:286–92.

    CAS  CrossRef  PubMed  Google Scholar 

  53. Babaian RJ, Troncoso P, Bhadkamar VA, et al. Analysis of clinicopathologic factors predicting outcome after radical prostatectomy. Cancer. 2001;91:1414–22.

    CAS  CrossRef  PubMed  Google Scholar 

  54. Murphy C, True L, Vakar-Lopez F, et al. A novel system for estimating residual disease and pathologic response to neoadjuvant treatment of prostate cancer. Prostate. 2016;76:1285–92.

    CAS  CrossRef  PubMed  Google Scholar 

  55. The Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell. 2015;163(4):1011–25.

    CrossRef  PubMed Central  Google Scholar 

  56. Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–28.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  57. Nam RK, Sugar L, Yang W, et al. Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localized prostate cancer. Br J Cancer. 2007;97:1690–5.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Demichelis F, Fall K, Perner S, et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene. 2007;26:4596–9.

    CAS  CrossRef  PubMed  Google Scholar 

  59. Pettersson A, Graff RE, Bauer SR, et al. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomark Prev. 2012;21:1497–509.

    CrossRef  Google Scholar 

  60. Gopalan A, Leversha MA, Satagopan JM, et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res. 2009;69:1400–6.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  61. Rodrigues DN, Boysen G, Sumanasuriya S, et al. The molecular underpinnings of prostate cancer: impacts of management and pathology practice. J Pathol. 2017;241(2):173–82.

    CAS  CrossRef  PubMed  Google Scholar 

  62. Hu R, Lu C, Mostaghel EA, et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 2012;72:3457–62.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  63. Mostaghel EA, Marck BT, Plymate SR, et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res. 2011;17:5913–25.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Li Y, Chan SC, Brand LJ, et al. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res. 2013;73:483–9.

    CAS  CrossRef  PubMed  Google Scholar 

  65. Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–38.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  66. Welti J, Rodrigues DN, Sharp A, et al. Analytical validation and clinical qualification of a new immunohistochemical assay for androgen receptor splice variant-7 protein expression in metastatic castration-resistant prostate cancer. Eur Urol. 2016;70(4):599–608.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  67. Scher HI, Lu D, Schreiber NA, Louw J, et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2016 Nov 1;2(11):1441–9.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Lotan TL, Gurel B, Suttcliffe S, et al. PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin Cancer Res. 2011;17:6563–73.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  69. Ferraldeschi R, Nava Rodrigues D, Riisnaes R, et al. PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. Eur Urol. 2015;67:795–802.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  70. Ahearn TU, Pettersson A, Ebot EM, et al. A prospective investigation of PTEN loss and ERG expression in lethal prostate cancer. J Natl Cancer Inst. 2016;108:dvj346.

    CrossRef  Google Scholar 

  71. Struewing JP, Hartge P, Wacholder S, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med. 1997;336:1401–8.

    CAS  CrossRef  PubMed  Google Scholar 

  72. Gallagher DJ, Gaudet MM, Pal P, et al. Germline BRCA mutations denote clinicopathologic subset of prostate cancer. Clin Cancer Res. 2010;16:2115–21.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  73. Mateo J, Carreira S, Sandhu S, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373:1697–708.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  74. Pritchard CC, Morrissey C, Kumar A, et al. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat Commun. 2014;5:4988.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  75. Graff JN, Alumkal JJ, Drake CG, et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget. 2016; doi:10.18632/oncotarget.10547.

    Google Scholar 

  76. Chung K, Wallace J, Kim SY. Structural and molecular interrogation of intact biological systems. Nature. 2013;497(7449):332–7. doi:10.1038/nature12107.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  77. Santi PA. Light sheet fluorescent microscopy: a review. J Histochem Cytochem. 2011;59(2):129–38. doi:10.1369/0022155410394857.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  78. van Royen ME, Verhoef EI, Kweldam CF, et al. Three-dimensional microscopic analysis of clinical prostate specimens. Histopathology. 2016;69:985–92.

    CrossRef  PubMed  Google Scholar 

  79. Mateo J, Boysen G, Barbieri CE, et al. DNA repair in prostate cancer: biology and clinical implications. Eur Urol. 2016; doi:10.1016/j.eururo.2016.08.037. pii:S0302-2838(16)30504-8

    Google Scholar 

  80. Gordon RR, Wu M, Huang C-Y, et al. Chemotherapy-induced monoamine oxidase expression in prostate carcinoma functions as a cytoprotective resistance enzyme and associates with clinical outcomes. PLoS. 2014;9(9):e104271.

    CrossRef  Google Scholar 

  81. Sun Y, Campisi J, Higano C, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 2012;18(9):1359–68.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Funda Vakar-Lopez M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vakar-Lopez, F. (2017). Histopathological Evaluation in Prostate Cancer. In: Ozyigit, G., Selek, U. (eds) Principles and Practice of Urooncology. Springer, Cham. https://doi.org/10.1007/978-3-319-56114-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56114-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56113-4

  • Online ISBN: 978-3-319-56114-1

  • eBook Packages: MedicineMedicine (R0)