Skip to main content

Compression-Aware In-Memory Query Processing: Vision, System Design and Beyond

  • Conference paper
  • First Online:
Data Management on New Hardware (ADMS 2016, IMDM 2016)

Abstract

In-memory database systems have to keep base data as well as intermediate results generated during query processing in main memory. In addition, the effort to access intermediate results is equivalent to the effort to access the base data. Therefore, the optimization of intermediate results is interesting and has a high impact on the performance of the query execution. For this domain, we propose the continuous use of lightweight compression methods for intermediate results and have the aim of developing a balanced query processing approach based on compressed intermediate results. To minimize the overall query execution time, it is important to find a balance between the reduced transfer times and the increased computational effort. This paper provides an overview and presents a system design for our vision. Our system design addresses the challenge of integrating a large and evolving corpus of lightweight data compression algorithms in an in-memory column store. In detail, we present our model-driven approach and describe ongoing research topics to realize our compression-aware query processing vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Website - https://wwwdb.inf.tu-dresden.de/research-projects/projects/collate/.

  2. 2.

    https://www.gnu.org/software/octave/.

References

  1. Abadi, D., Boncz, P.A., Harizopoulos, S., Idreos, S., Madden, S.: The design and implementation of modern column-oriented database systems. Found. Trends Databases 5(3), 197–280 (2013)

    Article  Google Scholar 

  2. Abadi, D.J., Madden, S.R., Ferreira, M.C.: Integrating compression and execution in column-oriented database systems. In: SIGMOD, pp. 671–682 (2006)

    Google Scholar 

  3. Anh, V.N., Moffat, A.: Inverted index compression using word-aligned binary codes. Inf. Retr. 8(1), 151–166 (2005)

    Article  Google Scholar 

  4. Arroyuelo, D., González, S., Oyarzún, M., Sepulveda, V.: Document identifier reassignment and run-length-compressed inverted indexes for improved search performance. In: SIGIR, pp. 173–182 (2013)

    Google Scholar 

  5. Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the memory wall in MonetDB. Commun. ACM 51(12), 77–85 (2008)

    Article  Google Scholar 

  6. Chen, Z., Gehrke, J., Korn, F.: Query optimization in compressed database systems. SIGMOD Rec. 30(2), 271–282 (2001)

    Article  Google Scholar 

  7. Copeland, G.P., Khoshafian, S.N.: A decomposition storage model. SIGMOD Rec. 14(4), 268–279 (1985)

    Article  Google Scholar 

  8. Damme, P., Habich, D., Lehner, W.: A benchmark framework for data compression techniques. In: Nambiar, R., Poess, M. (eds.) TPCTC 2015. LNCS, vol. 9508, pp. 77–93. Springer, Cham (2016). doi:10.1007/978-3-319-31409-9_6

    Chapter  Google Scholar 

  9. Damme, P., Habich, D., Lehner, W.: Direct transformation techniques for compressed data: general approach and application scenarios. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) ADBIS 2015. LNCS, vol. 9282, pp. 151–165. Springer, Cham (2015). doi:10.1007/978-3-319-23135-8_11

    Chapter  Google Scholar 

  10. Delbru, R., Campinas, S., Samp, K., Tummarello, G., Dangan, L., Delbru, R., Campinas, S., Samp, K., Tummarello, G.: Adaptive frame of reference for compressing inverted lists (2010)

    Google Scholar 

  11. Goldstein, J., Ramakrishnan, R., Shaft, U.: Compressing relations and indexes. In: ICDE, pp. 370–379 (1998)

    Google Scholar 

  12. Habich, D., Richly, S., Lehner, W.: GignoMDA - exploiting cross-layer optimization for complex database applications. In: VLDB (2006)

    Google Scholar 

  13. Iyer, B.R., Wilhite, D.: Data compression support in databases. In: VLDB Conference, pp. 695–704 (1994)

    Google Scholar 

  14. Kissinger, T., Schlegel, B., Habich, D., Lehner, W.: KISS-Tree: smart latch-free in-memory indexing on modern architectures. In: DaMoN, pp. 16–23 (2012)

    Google Scholar 

  15. Kissinger, T., Schlegel, B., Habich, D., Lehner, W.: QPPT: query processing on prefix trees. In: CIDR 2013 (2013)

    Google Scholar 

  16. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Model Driven Architecture: Practice and Promise. Addison-Wesley, Massachusetts (2003)

    Google Scholar 

  17. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: artful indexing for main-memory databases. In: ICDE, pp. 38–49 (2013)

    Google Scholar 

  18. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vectorization. Softw. Pract. Exper. 45(1), 1–29 (2015)

    Article  Google Scholar 

  19. Neumann, T.: Efficiently compiling efficient query plans for modern hardware. PVLDB 4(9), 539–550 (2011)

    Google Scholar 

  20. Qiao, L., Raman, V., Reiss, F., Haas, P.J., Lohman, G.M.: Main-memory scan sharing for multi-core cpus. PVLDB 1, 610–621 (2008)

    Google Scholar 

  21. Roth, M.A., Van Horn, S.J.: Database compression. SIGMOD Rec. 22(3), 31–39 (1993)

    Article  Google Scholar 

  22. Schlegel, B., Gemulla, R., Lehner, W.: Fast integer compression using SIMD instructions. In: DaMoN (2010)

    Google Scholar 

  23. Silvestri, F., Venturini, R.: Vsencoding: efficient coding and fast decoding of integer lists via dynamic programming. In: CIKM, pp. 1219–1228 (2010)

    Google Scholar 

  24. Stepanov, A.A., Gangolli, A.R., Rose, D.E., Ernst, R.J., Oberoi, P.S.: SIMD-based decoding of posting lists. In: CIKM, pp. 317–326 (2011)

    Google Scholar 

  25. Willhalm, T., Popovici, N., Boshmaf, Y., Plattner, H., Zeier, A., Schaffner, J.: SIMD-scan: ultra fast in-memory table scan using on-chip vector processing units. PVLDB 2(1), 385–394 (2009)

    Google Scholar 

  26. Williams, R.: Adaptive Data Compression. Kluwer International Series in Engineering and Computer Science: Communications and Information Theory. Springer, US (1991)

    Book  MATH  Google Scholar 

  27. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar RAM-CPU cache compression. In: ICDE, p. 59 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Habich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hildebrandt, J., Habich, D., Damme, P., Lehner, W. (2017). Compression-Aware In-Memory Query Processing: Vision, System Design and Beyond. In: Blanas, S., Bordawekar, R., Lahiri, T., Levandoski, J., Pavlo, A. (eds) Data Management on New Hardware. ADMS IMDM 2016 2016. Lecture Notes in Computer Science(), vol 10195. Springer, Cham. https://doi.org/10.1007/978-3-319-56111-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56111-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56110-3

  • Online ISBN: 978-3-319-56111-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics