Skip to main content

Mucosal Homeostasis of the Oral Mucosa

  • Chapter
  • First Online:
Oral Mucosa in Health and Disease

Abstract

Knowledge of the homeostatic mechanisms that exist in the oral mucosa is increasing in their complexity and it is becoming clear that mechanisms that exist in the gastrointestinal tract differ considerably from those in the mouth. Regional variation plays a part in the subdivision of the mechanisms at work and this chapter compares and contrasts the well-established mechanisms of gut homeostasis with new knowledge of the mechanisms at work in the oral cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novak N, Haberstok J, Bieber T, Allam JP. The immune privilege of the oral mucosa. Trends Mol Med. 2008;14(5):191–8.

    Article  PubMed  Google Scholar 

  2. Allam JP, Stojanovski G, Friedrichs N, Peng W, Bieber T, Wenzel J, Novak N. Distribution of Langerhans cells and mast cells within the human oral mucosa: new application sites of allergens in sublingual immunotherapy? Allergy. 2008b;63(6):720–7.

    Article  PubMed  Google Scholar 

  3. Eskan MA, Rose BG, Benakanakere MR, Zeng Q, Fujioka D, Martin MH, Lee MJ, Kinane DF. TLR4 and S1P receptors cooperate to enhance inflammatory cytokine production in human gingival epithelial cells. Eur J Immunol. 2008;38(4):1138–47.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Greer A, Zenobia C, Darveau RP. Defensins and LL-37: a review of function in the gingival epithelium. Periodontol 2000. 2013;63(1):67–79.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Allam JP, Novak N, Duan Y, Winter J, Stojanovski G, Fronhoffs F, Wenghoefer M, Bieber T, Peng WM. Tolerogenic T cells, Th1/Th17 cytokines and TLR2/TLR4 expressing dendritic cells predominate the microenvironment within distinct oral mucosal sites. Allergy. 2011;66(4):532–9.

    Article  PubMed  Google Scholar 

  6. Steinman RM. Dendritic cells: understanding immunogenicity. Eur J Immunol. 2007;37(Suppl 1):S53–60.

    Article  PubMed  Google Scholar 

  7. Pabst O, Mowat AM. Oral tolerance to food protein. Mucosal Immunol. 2012;5(3):232–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chehade M, Mayer L. Oral tolerance and its relation to food hypersensitivities. J Allergy Clin Immunol. 2005;115(1):3–12; quiz 13.

    Article  PubMed  Google Scholar 

  9. Brandtzaeg P, Pabst R. Let's go mucosal: communication on slippery ground. Trends Immunol. 2004;25(11):570–7.

    Article  PubMed  Google Scholar 

  10. Rescigno M. Dendritic cells in oral tolerance in the gut. Cell Microbiol. 2011;13(9):1312–8.

    Article  PubMed  Google Scholar 

  11. Jonuleit H, Schmitt E. The regulatory T cell family: distinct subsets and their interrelations. J Immunol. 2003;171(12):6323–7.

    Article  PubMed  Google Scholar 

  12. Wambre E. Effect of allergen-specific immunotherapy on CD4+ T cells. Curr Opin Allergy Clin Immunol. 2015;15(6):581–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shen L, Turner JR. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am J Physiol Gastrointest Liver Physiol. 2006;290(4):G577–82.

    Article  PubMed  Google Scholar 

  14. Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8(6):411–20.

    Article  PubMed  Google Scholar 

  15. Brandtzaeg P. Food allergy: separating the science from the mythology. Nat Rev Gastroenterol Hepatol. 2010;7(7):380–400.

    Article  PubMed  Google Scholar 

  16. Rakoff-Nahoum S, Hao L, Medzhitov R. Role of toll-like receptors in spontaneous commensal-dependent colitis. Immunity. 2006;25(2):319–29.

    Article  PubMed  Google Scholar 

  17. Abreu MT, Vora P, Faure E, Thomas LS, Arnold ET, Arditi M. Decreased expression of toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol. 2001;167(3):1609–16.

    Article  PubMed  Google Scholar 

  18. Melmed G, Thomas LS, Lee N, Tesfay SY, Lukasek K, Michelsen KS, Zhou Y, Hu B, Arditi M, Abreu MT. Human intestinal epithelial cells are broadly unresponsive to toll-like receptor 2-dependent bacterial ligands: implications for host-microbial interactions in the gut. J Immunol. 2003;170(3):1406–15.

    Article  PubMed  Google Scholar 

  19. Lotz M, Gutle D, Walther S, Menard S, Bogdan C, Hornef MW. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J Exp Med. 2006;203(4):973–84.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Weindl G, Naglik JR, Kaesler S, Biedermann T, Hube B, Korting HC, Schaller M. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J Clin Invest. 2007;117(12):3664–72.

    PubMed  PubMed Central  Google Scholar 

  21. Nassar M, Tabib Y, Capucha T, Mizraji G, Nir T, Pevsner-Fischer M, Zilberman-Schapira G, Heyman O, Nussbaum G, Bercovier H, Wilensky A, Elinav E, Burstyn-Cohen T, Hovav AH. GAS6 is a key homeostatic immunological regulator of host-commensal interactions in the oral mucosa. Proc Natl Acad Sci U S A. 2017;114(3):E337–46.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rothlin CV, Carrera-Silva EA, Bosurgi L, Ghosh S. TAM receptor signaling in immune homeostasis. Annu Rev Immunol. 2015;33:355–91.

    Article  PubMed  PubMed Central  Google Scholar 

  23. da Silva BR, de Freitas VA, Nascimento-Neto LG, Carneiro VA, Arruda FV, de Aguiar AS, Cavada BS, Teixeira EH. Antimicrobial peptide control of pathogenic microorganisms of the oral cavity: a review of the literature. Peptides. 2012;36(2):315–21.

    Article  PubMed  Google Scholar 

  24. Dommisch H, Acil Y, Dunsche A, Winter J, Jepsen S. Differential gene expression of human beta-defensins (hBD-1, −2, −3) in inflammatory gingival diseases. Oral Microbiol Immunol. 2005;20(3):186–90.

    Article  PubMed  Google Scholar 

  25. Li X, Duan D, Yang J, Wang P, Han B, Zhao L, Jepsen S, Dommisch H, Winter J, Xu Y. The expression of human beta-defensins (hBD-1, hBD-2, hBD-3, hBD-4) in gingival epithelia. Arch Oral Biol. 2016;66:15–21.

    Article  PubMed  Google Scholar 

  26. Brandtzaeg P. 'ABC' of mucosal immunology. Nestle Nutr Workshop Ser Pediatr Program. 2009a;64:23–38; discussion 38-43, 251-257.

    Article  PubMed  Google Scholar 

  27. Brandtzaeg P. Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol. 2009b;70(6):505–15.

    Article  PubMed  Google Scholar 

  28. Wang M, Gao Z, Zhang Z, Pan L, Zhang Y. Roles of M cells in infection and mucosal vaccines. Hum Vaccin Immunother. 2014;10(12):3544–51.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Csencsits KL, Jutila MA, Pascual DW. Mucosal addressin expression and binding-interactions with naive lymphocytes vary among the cranial, oral, and nasal-associated lymphoid tissues. Eur J Immunol. 2002;32(11):3029–39.

    Article  PubMed  Google Scholar 

  30. Cutler CW, Jotwani R. Dendritic cells at the oral mucosal interface. J Dent Res. 2006;85(8):678–89.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Allam JP, Novak N, Fuchs C, Asen S, Berge S, Appel T, Geiger E, Kochan JP, Bieber T. Characterization of dendritic cells from human oral mucosa: a new Langerhans' cell type with high constitutive FcepsilonRI expression. J Allergy Clin Immunol. 2003;112(1):141–8.

    Article  PubMed  Google Scholar 

  32. Iwasaki A. Mucosal dendritic cells. Annu Rev Immunol. 2007;25:381–418.

    Article  PubMed  Google Scholar 

  33. Van Hoogstraten IM, Andersen KE, Von Blomberg BM, Boden D, Bruynzeel DP, Burrows D, Camarasa JG, Dooms-Goossens A, Kraal G, Lahti A, et al. Reduced frequency of nickel allergy upon oral nickel contact at an early age. Clin Exp Immunol. 1991;85(3):441–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Allam JP, Peng WM, Appel T, Wenghoefer M, Niederhagen B, Bieber T, Berge S, Novak N. Toll-like receptor 4 ligation enforces tolerogenic properties of oral mucosal Langerhans cells. J Allergy Clin Immunol. 2008a;121(2):368–374 e361.

    Article  PubMed  Google Scholar 

  35. Muthukuru M, Jotwani R, Cutler CW. Oral mucosal endotoxin tolerance induction in chronic periodontitis. Infect Immun. 2005;73(2):687–94.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hawrylowicz CM, O'Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol. 2005;5(4):271–83.

    Article  PubMed  Google Scholar 

  37. Levings MK, Gregori S, Tresoldi E, Cazzaniga S, Bonini C, Roncarolo MG. Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood. 2005;105(3):1162–9.

    Article  PubMed  Google Scholar 

  38. Allam JP, Wurtzen PA, Reinartz M, Winter J, Vrtala S, Chen KW, Valenta R, Wenghoefer M, Appel T, Gros E, Niederhagen B, Bieber T, Lund K, Novak N. Phl p 5 resorption in human oral mucosa leads to dose-dependent and time-dependent allergen binding by oral mucosal Langerhans cells, attenuates their maturation, and enhances their migratory and TGF-beta 1 and IL-10-producing properties. J Allergy Clin Immunol. 2010;126(3):638–U635.

    Article  PubMed  Google Scholar 

  39. Mascarell L, Lombardi V, Louise A, Saint-Lu N, Chabre H, Moussu H, Betbeder D, Balazuc AM, Van Overtvelt L, Moingeon P. Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells. J Allergy Clin Immunol. 2008;122(3):603–609 e605.

    Article  PubMed  Google Scholar 

  40. Conti HR, Gaffen SL. IL-17-mediated immunity to the opportunistic fungal pathogen Candida Albicans. J Immunol. 2015;195(3):780–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Iliev ID, Matteoli G, Rescigno M. The yin and yang of intestinal epithelial cells in controlling dendritic cell function. J Exp Med. 2007;204(10):2253–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Samsom JN. Regulation of antigen-specific regulatory T-cell induction via nasal and oral mucosa. Crit Rev Immunol. 2004;24(3):157–77.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Allam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allam, JP., Novak, N. (2018). Mucosal Homeostasis of the Oral Mucosa. In: Bergmeier, L. (eds) Oral Mucosa in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-56065-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56065-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56064-9

  • Online ISBN: 978-3-319-56065-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics