Skip to main content

Polarization Switching Dynamics in PbFe1/2Nb1/2O3 Ceramics as Seen via the Frequency Dependence of Hysteresis Loops

  • Conference paper
  • First Online:
Advanced Materials

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 193))

  • 1566 Accesses

Abstract

Our studies have shown that both the shape of hysteresis loops and the value of the remnant polarization P r of highly-resistive Li-doped PbFe1/2Nb1/2O3 (PFN) ceramics , depend substantially on the frequency of the measuring field. With decreasing of the field frequency, the value of P r increases. We propose a model explaining this phenomenon, taking into account the relaxation of the charge localized at the grain-boundary surface states. In polycrystalline ferroelectrics-semiconductors, Schottky-type depletion layers are formed at the grain boundaries . The presence of such barrier layers in the PFN ceramics is evidenced by a small positive temperature coefficient of resistivity anomaly near the Curie temperature . Electric field in the Schottky layer is very large and it usually determines the direction of polarization P gb in the layer. This direction may be opposite to the direction of polarization P g in the bulk of the grain. If the measuring electric field changes sinusoidally with time, the temporal changes of P gb are determined by the relaxation time τ of the charge redistribution in the Schottky layers . For high enough values of the external field frequency (υ ~ 70 Hz), this charge has not enough time to relax and spontaneous polarization in the part of the grain adjacent to the grain boundary does not manage to switch. Computer simulations have shown that this model gives rather good agreement with experiment for different frequencies of the external field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.M. Duiker, P.D. Beale, J.F. Scott, J.F. Scott, C.A. Paz de Araujo, B.M. Melnick, J.D. Cuchiaro, L.D. McMillan, J. Appl. Phys. 68, 5783 (1990)

    Google Scholar 

  2. J.F. Scott, Science 315, 954 (2007)

    Article  Google Scholar 

  3. V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N.D. Mathur, A. Barthélémy, M. Bibes, Nature 460, 81 (2009)

    Article  Google Scholar 

  4. Y. Yongbo, T.J. Reece, S. Pankaj, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J. Huang, Nat. Mater. 10, 296 (2011)

    Google Scholar 

  5. S.M. Yang, J.G. Yoon, T.W. Noh, Curr. Appl. Phys. 11, 1111 (2011)

    Article  Google Scholar 

  6. J. Li, B. Nagaraj, H. Liang, W. Cao, H. Lee Chi, W. Cao, H. Lee Chi, R. Ramesh, Appl. Phys. Lett. 84, 1174 (2004)

    Google Scholar 

  7. T.N. Christopher, G. Peng, J.R. Jokisaari, C. Heikes, C. Adamo, A. Melville, B. Seung-Hyub, C.M. Folkman, B. Winchester, Y. Gu, L. Yuanming, K. Zhang, E. Wang, J. Li, C. Long-Qing, E. Chang-Beom, D.G. Schlom, X. Pan, Science 334, 968 (2011)

    Article  Google Scholar 

  8. Y.W. So, D.J. Kim, T.W. Noh, T.W. Noh, J.-G. Yoon, T.K. Song, Appl. Phys. Lett. 86, 092905 (2005)

    Article  Google Scholar 

  9. S.M. Yang, J.Y. Jo, T.H. Kim, J.-G. Yoon, T.K. Song, H.N. Lee, Z. Marton, S. Park, Y. Jo, T.W. Noh, Phys. Rev. Lett. 82, 174125 (2010)

    Google Scholar 

  10. X. Chen, X. Dong, F. Cao, J. Wang, G. Wang, J. Am. Ceram. Soc. 97, 213 (2014)

    Article  Google Scholar 

  11. B.S. Li, G.R. Li, Q.R. Yin, Z.G. Zhu, A.L. Ding, W.W. Cao, J. Phys. D: Appl. Phys. 38, 8 (2005)

    Google Scholar 

  12. M.H. Lente, A. Picinin, J.P. Rino, J.A. Eiras, J. Appl. Phys. 95, 2646 (2004)

    Article  Google Scholar 

  13. D. Bochenek, P. Kruk, R. Skulski, P. Wawrzała, J. Electroceram. 26, 1 (2011)

    Article  Google Scholar 

  14. I.P. Raevski, S.T. Kirillov, M.A. Malitskaya, V.P. Filippenko, S.M. Zaitsev, L.G. Kolomin, Inorg. Mater. 24, 217 (1988)

    Google Scholar 

  15. O. Raymond, R. Font, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 109, 094106 (2011)

    Article  Google Scholar 

  16. J. Rossignol, A. Simon, J. Ravez, P. Hagenmuller, Revue de Chimie Minerale 22, 577 (1985)

    Google Scholar 

  17. J. Li, F. Li, S. Zhang, Am. Cer. Soc. 97, 1 (2014)

    Article  Google Scholar 

  18. A.A. Bokov, L.A. Shpak, I.P. Rayevsky, J. Phys. Chem. Solids 54, 495 (1993)

    Article  Google Scholar 

  19. I.P. Raevski, S.P. Kubrin, S.A. Kovrigina, S.I. Raevskaya, V.V. Titov, A.S. Emelyanov, M.A. Malitskaya, I.N. Zakharchenko, Ferroelectrics 397, 96 (2010)

    Article  Google Scholar 

  20. E.I. Sitalo, I.P. Raevski, A.G. Lutokhin, A.V. Blazhevich, S.P. Kubrin, S.I. Raevskaya, Y.N. Zakharov, M.A. Malitskaya, V.V. Titov, I.N. Zakharchenko, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 58, 1914 (2011)

    Google Scholar 

  21. L.A. Belova, Y.I. Golcov, O.I. Prokopalo, I.P. Rayevsky, Inorg. Mater. 22, 1004 (1986)

    Google Scholar 

  22. I.P. Raevski, O.I. Prokopalo, A.E. Panich, E.I. Bondarenko, A.N. Pavlov, Electrical Conductivity and Posistor Effect in Oxides of the Perovskite Family (SKNC VSh Press, Rostov-on-Don, 2002), 280 p. (In Russian)

    Google Scholar 

  23. W. Heywang, J. Am. Ceram. Soc. 47, 484 (1964)

    Article  Google Scholar 

  24. G. Goodman, J. Am. Ceram. Soc. 46, 48 (1963)

    Article  Google Scholar 

  25. F. Brown, G.E. Taylor, J. Appl. Phys. 35, 2554 (1964)

    Article  Google Scholar 

  26. T. Takeda, A. Watanabe, H. Sasaki, J. Phys. Soc. Jpn. 21, 2414 (1966)

    Article  Google Scholar 

  27. K. Kawabe, Y. Inuishi, Jpn. J. Appl. Phys. 2, 590 (1963)

    Google Scholar 

  28. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  29. W.T. Peria, W.R. Bratschun, R.D. Fenity, J. Am. Ceram. Soc. 44, 249 (1961)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Ministry of Education and Science of the Russian Federation (Research project No. 3.1649.2017/PP) and by the Southern Federal University (Grant No. 213.01-2014/012VG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Minasyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pavlov, A.N. et al. (2017). Polarization Switching Dynamics in PbFe1/2Nb1/2O3 Ceramics as Seen via the Frequency Dependence of Hysteresis Loops. In: Parinov, I., Chang, SH., Jani, M. (eds) Advanced Materials. Springer Proceedings in Physics, vol 193. Springer, Cham. https://doi.org/10.1007/978-3-319-56062-5_15

Download citation

Publish with us

Policies and ethics