Skip to main content

Synthesis and Functionalization of Mesoporous Bioactive Glasses for Drug Delivery

  • Chapter
  • First Online:
  • 1074 Accesses

Abstract

Recently Mesoporous bioactive glasses were synthesized for which outstanding applications in the biomedical field are expected. It is nowadays recognized, in fact, that microporous and mesoporous inorganic and hybrid organic-inorganic bioactive matrices and scaffolds can be produced with controlled rates of resorption and controlled surface chemistries. The type and concentration of released inorganic and organic species and their release sequence can be tuned; this is a vital requirement in stimulating cell proliferation and enhancing subsequent cell differentiation. The ability to bond to living tissues and the high pore volume allow to exploit mesoporous bioactive materials also simply for local drug delivery allowing to overcome the limitations of systemic delivery: therapeutic concentrations at the site of infection, but for short periods of time, forcing repeated dosing for longer periods.

The chapter is organized in four sections. The first one deals with synthesis and mechanism of formation of mesoporous bioactive glasses. The second one analyses the bioactive behavior. The third one is devoted to understand the specificity of bioactive response induced by the mesoporous structure. The fourth one deals with drug delivery from mesoporous bioactive glasses. In a first subparagraph the advantages of using bioactive glasses for local derivery and the construction of tissue engineering scaffolds are analysed. In the second one the complexity of therapeutics delivery from mesoporous bioactive glasses is analysed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.

    Article  Google Scholar 

  2. Andersson OH, Karlsson KH, Kangasniemi K. Calcium phosphate formation at the surface of bioactive glass in vivo. J Non Cryst Solids. 1990;119:290–6.

    Article  Google Scholar 

  3. Branda F. The Sol-Gel route to nanocomposites. In: Boreddy SR, editor. Advances in nanocomposites – synthesis, characterization and industrial applications. Reddy, INTECH open access publisher; 2011. Available online: (http://www.intechopen.com/articles/show/title/the-sol-gel-route-to-nanocomposites).

  4. Branda F, Arcobello-Varlese F, Costantini A, Luciani G. Effect of the substitution of M2O3 (M=La,Y,In,Ga,Al) for CaO on the bioactivity of 2.5CaO _ 2SiO2 glass. Biomaterials. 2002;23:711–6.

    Article  Google Scholar 

  5. Bretcanu O, Misra S, Roy I, Renghini C, Fiori F, Boccaccini AR, Salih V. In vitro biocompatibility of 45S5 bioglass-derived glass–ceramic scaffolds coated with poly(3-hydroxybutyrate). J Tissue Eng Regen Med. 2009;3:139–48.

    Article  Google Scholar 

  6. Brinker CJ, Sherer W. Sol-gel science: the physics and chemistry of Sol-gel processing. San Diego: Academic Press; 1990.

    Google Scholar 

  7. Brinker JC, Lu Y, Sellinger A, Fan H. Evaporation-induced self-assembly: nanostructures made easy. Adv. Mater. 1999;11(7):579–85.

    Article  Google Scholar 

  8. Bruinsma PJ, Kim AY, Liu J, Baskaran S. Chem Mater. 1997;9:2507.

    Article  Google Scholar 

  9. Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167(3916):279–80.

    Article  Google Scholar 

  10. Carlisle E. Silicon: a requirement in bone formation independent of vitamin D1. Calcif Tissue Int. 1981;33(1):27–34.

    Article  Google Scholar 

  11. Chatzistavrou X, Tsigkou O, Amin HD, Paraskevopoulos KM, Salih V, Boccaccini AR. Sol–gel based fabrication and characterization of new bioactive glass–ceramic composites for dental applications. J Eur Ceram Soc. 2012;32:3051.

    Article  Google Scholar 

  12. Chen QZ, Boccaccini AR. Poly(D,L-lactic acid) coated 45S5 bioglass®-based scaffolds: processing and characterization. J Biomed Mater Res A. 2006;77A:445–57.

    Article  Google Scholar 

  13. Chen Q, Roether JA, Boccaccini AR. Chapter 6: Tissue engineering scaffolds from bioactive glass and composite materials. In: Ashammakhi N, Reis R, Chiellini F, editors. Topics in tissue engineering, vol. 4. 2008. http://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol4/

  14. Chiola V, Ritsko JE, Vanderpool CD, US Patent 3556725, 1971.

    Google Scholar 

  15. Ciesla U, Schüth F. Ordered mesoporous materials – review. Microporous Mesoporous Mater. 1999;27:131–49.

    Article  Google Scholar 

  16. Damen JJM, Ten Cate JM. Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation. J Dent Res. 1992;71(3):453–7.

    Article  Google Scholar 

  17. Di Renzo F, Cambon H, Dudartre R. A 28 years old synthesis of micelle templated mesoporous silica. Microporous Mater. 1997;10:283–6.

    Article  Google Scholar 

  18. Duchène P. Stimulation of biological function with bioactive glass. MRS Bull. 1998;23(11):43–9.

    Article  Google Scholar 

  19. Dzondo-Gadet M, Mayap-Nzietchueng R, Hess K, Nabet P, Belleville F, Dousset B. Action of boron at the molecular level. Biol Trace Elem Res. 2002;85(1):23–33.

    Article  Google Scholar 

  20. Finney L, Vogt S, Fukai T, Glesne D. Copper and angiogenesis: unraveling a relationship key to cancer progression. Clin Exp Pharmacol Physiol. 2009;36(1):88–94.

    Article  Google Scholar 

  21. Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA, Zasadzinki JA, Glinka C, Nicol J, Margolese D, Stucky GD, Chmelka BF. Science. 1995;267:1138.

    Article  Google Scholar 

  22. Fu Q, Saiz E, Tomsia AP. Bioinspired strong and highly porous glass scaffolds. Adv Funct Mater. 2011;21:1058–63.

    Article  Google Scholar 

  23. Fu Q, Saiz E, Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C. 2011;31:1245–56.

    Article  Google Scholar 

  24. Fu Q, Saiz E, Tomsia AP. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and re generation. Acta Biomater. 2011;7:3547–54.

    Article  Google Scholar 

  25. Garcıa A, Cicuéndez M, Izquierdo-Barba I, Arcos D, Vallet-Régı M. Essential role of calcium phosphate heterogeneities in 2D-hexagonal and 3D-cubic SiO2-CaO-P2O5 mesoporous bioactive glasses. Chem Mater. 2009;21:5474–84.

    Article  Google Scholar 

  26. Gérard C, Bordeleau L-J, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31(5):824–31.

    Article  Google Scholar 

  27. Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010;3:3867–910.

    Article  Google Scholar 

  28. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74(7):1487–510.

    Article  Google Scholar 

  29. Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19:1419–23.

    Article  Google Scholar 

  30. Hench LL, Splint RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp. 1971;2(Part 1):117–41.

    Article  Google Scholar 

  31. Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

    Article  Google Scholar 

  32. Hu GF. Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem. 1998;69(3):326–35.

    Article  Google Scholar 

  33. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prosthesis. J Biomed Mater Res. 1970;4:433–56.

    Article  Google Scholar 

  34. Hum J, Boccaccini AR. Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J Mater Sci Mater Med. 2012;23:2317–33.

    Article  Google Scholar 

  35. Huo Q, Margolese DI, Clesia U, Feng P, Gier TE, Sieger P, Leon R, Petroff PM, Schüth F, Stucky GD. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature. 1994a;368:317–21.

    Article  Google Scholar 

  36. Huo Q, Margolese DI, Ciesra U, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF, Schuth F, Stucky GD. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater. 1994b;6:1176–91.

    Article  Google Scholar 

  37. Huo Q, Feng J, Schüth F, Stucky GD. Preparation of hard mesoporous silica spheres. Chem Mater. 1997;9:14–7.

    Article  Google Scholar 

  38. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  Google Scholar 

  39. Iler RK, US Patent 2663650, 1953.

    Google Scholar 

  40. Iler RK. The chemistry of silica. New York: Wiley; 1971. p. 562.

    Google Scholar 

  41. Izquierdo-Barba I, Arcos D, Sakamoto Y, Terasaki O, Lopez-Noriega A, Vallet-Régı M. High-performance mesoporous bioceramics mimicking bone mineralization. Chem Mater. 2008;20:3191–8.

    Article  Google Scholar 

  42. Jarcho M, Bolen CH, Thomas MB, Bobick J, Kayand JF, Doremus RH. Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci. 1976;11:2027.

    Article  Google Scholar 

  43. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9:4457–86.

    Article  Google Scholar 

  44. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–73.

    Article  Google Scholar 

  45. Jugdaohsingh R, Tucker KL, Qiao N, Cupples LA, Kiel DP, Powell JJ. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham offspring cohort. J Bone Miner Res. 2004;19(2):297–307.

    Article  Google Scholar 

  46. Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner EF, Wittrant Y, Masson M, Weiss P, Beck L, Magne D, Guicheux J. Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res. 2009;24(11):1856–68.

    Article  Google Scholar 

  47. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  Google Scholar 

  48. Katiyar A, Yadav S, Smirniotis PG, Pinto NG. Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. J Chromatogr A. 2006;1122:13–20.

    Article  Google Scholar 

  49. Klein C, Patka P, der Hollander W. Macroporous calcium phosphate bioceramics in dog femora: a histological study of interface and biodegradation. Biomaterials. 1989;10:59–62.

    Article  Google Scholar 

  50. Kokubo T. Surface chemistry of bioactive glass-ceramics. J Non Cryst Solids. 1990;120:138–51.

    Article  Google Scholar 

  51. Kokubo T. Novel bioactive materials derived from glasses, proceedings of the XVI international congress on glass, Madrid, vol. 1. Bol Soc Esp Ceram Vid. 1992;31-C(1):119–37.

    Google Scholar 

  52. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  Google Scholar 

  53. Kokubo T, Ito S, Shigematsu M, Sakka S, Yamamuro T. Mechanical properties of a new type of apatite-containing glass-ceramic for prosthetic application. J Mater Sci. 1985;20:2001–4.

    Article  Google Scholar 

  54. Kosuge K, Singh PS. Rapid synthesis of Al-containing mesoporous silica hard spheres of 30-50 μm diameter. Chem Mater. 2001;13:2476–82.

    Google Scholar 

  55. Kosuge K, Murakami T, Kikukawa N, Takemori M. Direct synthesis of porous pure and thiol-functional silica spheres through the S+X-I+ assembly pathway. Chem Mater. 2003;15:3184–9.

    Google Scholar 

  56. Kosuge K, Kikukawa N, Takemori M. One-step preparation of porous silica spheres from sodium silicate using triblock copolymer templating. Chem Mater. 2004;16:4181–6.

    Article  Google Scholar 

  57. Kosuge K, Sato T, Kikukawa N, Takemori M. Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate. Chem Mater. 2004;16:899–905.

    Article  Google Scholar 

  58. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.

    Article  Google Scholar 

  59. Kwun I-S, Cho Y-E, Lomeda R-AR, Shin H-I, Choi J-Y, Kang Y-H, Beattie JH. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone. 2010;46(3):732–41.

    Article  Google Scholar 

  60. Lebedev OI, Van Tendeloo G, Collart O, Cool P, Vansant EF. Structure and microstructure of nanoscale mesoporous silica sphere. Solid State Sci. 2004;6:489–98.

    Article  Google Scholar 

  61. LeGeros RZ. Biologically relevant calcium phosphates: preparation and characterization. In: Myers H, editor. Calcium phosphates in oral biology and medicine, monographs in oral sciences. Basel: Karger; 1991.

    Google Scholar 

  62. Liu X, Rahaman MN, Fu QA. Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: microstructure and mechanical response. Acta Biomater. 2011;7:406–16.

    Article  Google Scholar 

  63. Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Vallet-Régı M. Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem Mater. 2006;18:3137–44.

    Article  Google Scholar 

  64. Lu Y, Ganguli R, Celeste A, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature. 1997;389:364–8.

    Article  Google Scholar 

  65. Ma Y, Qi L, Ma J, Wu Y, Liu O, Cheng H. Large-pore mesoporous silica spheres: synthesis and application in HPLC. Colloids Surf A. 2003;229:1–8.

    Article  Google Scholar 

  66. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26(23):4847–55.

    Article  Google Scholar 

  67. Marie PJ. Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone. 2006;38(2, Suppl. 1):10–4.

    Article  Google Scholar 

  68. Marie PJ. The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone. 2010;46(3):571–6.

    Article  Google Scholar 

  69. Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001;69(3):121–9.

    Article  Google Scholar 

  70. Meunier PJ, Slosman DO, Delmas PD, Sebert JL, Brandi ML, Albanese C, Lorenc R, Pors-Nielsen S, De Vernejoul MC, Roces A, Reginster JY. Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis: a 2-year randomized placebo controlled trial. J Clin Endocrinol Metab. 2002;87(5):2060–6.

    Google Scholar 

  71. Moon DS, Lee JK. Tunable synthesis of hierarchical mesoporous silica nanoparticles with radial wrinkle structure. Langmuir. 2012;28:12341–7.

    Article  Google Scholar 

  72. Mourino V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J Roy Soc. 2010;7(43):209–27.

    Article  Google Scholar 

  73. Mourino V, Newby P, Boccaccini AR. Preparation and characterization of gallium releasing 3-D alginate coated 45S5 bioglass based scaffolds for bone tissue engineering. Adv Eng Mater. 2010;12:B283–91.

    Article  Google Scholar 

  74. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003. www.nature.com/naturematerials

    Article  Google Scholar 

  75. Nakamura T, Mizutani M, Nozaki H, Suzuki N, Yano K. Formation mechanism for monodispersed mesoporous silica spheres and its application to the synthesis of Core/Shell particles. J Phys Chem C. 2007;111:1093–100.

    Article  Google Scholar 

  76. Newby CP, Boccaccini AR. Bioactive glass and glass ceramic scaffolds for bone tissue engineering. In: Bioactive glasses – materials properties and applications, a volume in Woodhead publishing series in biomaterials. 2011. p. 107–28.

    Google Scholar 

  77. Nielsen FH. Is boron nutritionally relevant? Nutr Rev. 2008;66(4):183–91.

    Article  Google Scholar 

  78. Ogawa M. Formation of novel oriented transparent films of layered silica-surfactant nanocomposites. J Am Chem SOC. 1994;116:7941–2.

    Article  Google Scholar 

  79. Ogawa M. A simple sol-gel route for the preparation of silica-surfactant mesostructured. Mater Chem Commun. 1996: 1149–50.

    Google Scholar 

  80. Ogino M, Ohuchi F, Hench LL. Compositional dependence of the formation of calcium phosphate films on bioglass. J Biomed Mater Res. 1980;14:55–64.

    Article  Google Scholar 

  81. Pan W, Ye J, Ning G, Lin Y, Wang J. A novel synthesis of micrometer silica hollow sphere. Mater Res Bull. 2009;44:280–3.

    Article  Google Scholar 

  82. Pauwels B, Van Tendeloo G, Thoelen C, Van Rhijn W, Jacobs PA. Structure determination of spherical MCM-41 particles. Adv Mater. 2001;13(17):1317–20.

    Article  Google Scholar 

  83. Peltola T, Jokinen M, Rahiala H, Levanen E, Rosenholm JB, Kangasniemi I, Yli-Urpo A. Calcium phosphate formation on porous sol-gel-derived SiO2 and CaO-P2O5-SiO2 substrates in vitro. J Biomed Mater Res. 1999;44:12–21.

    Article  Google Scholar 

  84. Polshettiwar V, Cha D, Zhang X, Basset JM. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology. Angew Chem Int Ed. 2010;49:9652–6.

    Article  Google Scholar 

  85. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–73.

    Article  Google Scholar 

  86. Rawson H. Inorganic glass-forming system. London: Academic Press; 1967.

    Google Scholar 

  87. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32(2):127–35.

    Article  Google Scholar 

  88. Rodríguez JP, Ríos S, González M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem. 2002;85(1):92–100.

    Article  Google Scholar 

  89. Ruiz-Hernández E, Baeza A, Vallet-Regí M. Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano. 2011;5:1259–66.

    Article  Google Scholar 

  90. Salinas AJ, Vallet-Regı M. Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv. 2013;3:11116–31.

    Article  Google Scholar 

  91. Schepers EJG, Ducheyne P. Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1–24 month experiment with several materials and particle sizes and size ranges. J Oral Rehabil. 1997;24:171–81.

    Article  Google Scholar 

  92. Schumacher K, Ravikovitch PI, Du Chesne A, Neimark AV, Unger KK. Characterization of MCM-48 materials. Langmuir. 2000;16:4648–54.

    Article  Google Scholar 

  93. Sing KSW, Everett DH, Haul RHV, Moscou L, Pierotti RA, Rouquerol J, Siemieniewsk T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57(4):603–19.

    Article  Google Scholar 

  94. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9.

    Article  Google Scholar 

  95. Tan B, Rankin SE. Interfacial alignment mechanism of forming spherical silica with radially oriented nanopores. J Phys Chem B. 2004;108:20122–9.

    Article  Google Scholar 

  96. Tendeloo GV, Lebedev OI, Collart O, Cool P, Vansant EF. Structure of nanoscale mesoporous silica spheres? J Phys Condens Matter. 2003;15:S3037–46. Online at: stacks.iop.org/JPhysCM/15/S3037

    Google Scholar 

  97. Tolbert SH, Schaffer TE, Feng J, Hansma PK, Stucky GD. A new phase of oriented mesoporous silicate thin films. Chem Mater. 1997;9:1962–7.

    Article  Google Scholar 

  98. Tolli H, Kujala S, Levonen K, Jamsa T, Jalovaara P. Bioglass as a carrier for reindeer bone protein extract in the healing of rat femur defect. J Mater Sci Mater Med. 2010;21(5):1677–84.

    Article  Google Scholar 

  99. Uysal T, Ustdal A, Sonmez MF, Ozturk F. Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod. 2009;79(5):984–90.

    Article  Google Scholar 

  100. Valerio P, Pereira MM, Goes AM, Leite MF. Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomed Mater. 2009;4:045011.

    Article  Google Scholar 

  101. Vallet-Regı M, Ragel CV, Salinas AJ. Glasses with medical applications. Eur J Inorg Chem. 2003;6:1029–42.

    Article  Google Scholar 

  102. Vartuli JC, Schmitt KD, Kresge CT, Roth WJ, Leonowicz ME, McCullen SB, Hellring SD, Beck JS, Schlenker JL, Olson DH, Sheppard EW. Development of a formation mechanism for M41S materials. Stud Surf Sci Catal. 1994;84:53–60. http://dx.doi.org/10.1016/S0167-2991(08)64096-3

    Article  Google Scholar 

  103. Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small. 2010;6(18):1952–67.

    Article  Google Scholar 

  104. Vogel W, Holand W, Nauman K, Gumel J. Development of machineable bioactive glass ceramics for medical uses. J Non Cryst Solids. 1986;80:34–41.

    Article  Google Scholar 

  105. Wegst UGK, Ashby MF. The mechanical efficiency of natural materials. Philos Mag. 2004;84(21):2167–81. http://dx.doi.org/10.1080/14786430410001680935

    Article  Google Scholar 

  106. Wong PT, Choi SK. Mechanisms of drug release in nanotherapeutic delivery systems. Chem Rev. 2015;115:3388–432. doi:10.1021/cr5004634.

    Article  Google Scholar 

  107. Wu C, Ramaswamy Y, Zhu Y, Zheng R, Appleyard R, Howard A, Zreiqat H. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(DL-lactide-co-glycolide) films. Biomaterials. 2009;30(12):2199–208.

    Article  Google Scholar 

  108. Wu C, Zhang Y, Zhou Y, Fan W, Xiao Y. A comparative study of mesoporous-glass/silk and non-mesoporous-glass/silk scaffolds: physiochemistry and in vivo osteogenesis. Acta Biomater. 2011;7(5):2229–36.

    Article  Google Scholar 

  109. Wu C, Fan W, Gelinsky M, Xiao Y, Simon P, Schulze R, Doert T, Luo Y, Cuniberti G. Bioactive SrO–SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater. 2011;7(4):1797–806.

    Google Scholar 

  110. Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release. 2006;110(3):522–30.

    Article  Google Scholar 

  111. Yamaguchi M. Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med. 1998;11(2e3):119–35.

    Article  Google Scholar 

  112. Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T, Akagawa Y, Hamada Y, Takahashi J, Matsuura N. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res. 2002;62(1):99–105.

    Article  Google Scholar 

  113. Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew Chem Int Ed. 2004;43:5980–4.

    Article  Google Scholar 

  114. Yu C, Fan J, Tian B, Zhao D. Morphology development of mesoporous materials: a colloidal phase separation mechanism. Chem Mater. 2004;16:889–98.

    Article  Google Scholar 

  115. Yun H, Kim S, Hyeon Y. Highly ordered mesoporous bioactive glasses with Im3m symmetry. Mater Lett. 2007;61:4569–72.

    Article  Google Scholar 

  116. Zhang H, Li Z, Xu P, Wu R, Jiao Z. A facile two step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release. Chem Commun. 2010;46:6783–5.

    Article  Google Scholar 

  117. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279:548–52.

    Article  Google Scholar 

  118. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. Nonionic triblock and star Diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable mesoporous silica structures. J Am Chem Soc. 1998;120:6024–36.

    Article  Google Scholar 

  119. Zhao D, Yang P, Chmelka BF, Stucky GD. Multiphase assembly of mesoporous-macroporous membranes. Chem Mater. 1999;11:1174–8.

    Article  Google Scholar 

  120. Zhao D, Sun J, Li Q, Stucky GD. Morphological control of highly ordered mesoporous silica SBA-15. Chem Mater. 2000;12:275–9.

    Article  Google Scholar 

  121. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62(2):175–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Branda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Branda, F. (2017). Synthesis and Functionalization of Mesoporous Bioactive Glasses for Drug Delivery. In: Kaur, G. (eds) Clinical Applications of Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-56059-5_7

Download citation

Publish with us

Policies and ethics