Skip to main content

Nanostructured Calcium Phosphates for Drug, Gene, DNA and Protein Delivery and as Anticancer Chemotherapeutic Devices

  • Chapter
  • First Online:
Clinical Applications of Biomaterials

Abstract

During the past two decades, a number of materials and devices have been utilised in drug delivery applications. A range of biomaterials with different morphologies and pore sizes are currently utilised. For any given biomaterial or bioceramic, having an adequate control of the chemical composition as well as the critical pore sizes is important in terms of controlling the effectiveness when used to deliver drugs locally. In comparison to all currently known and used biomaterials, given the fact that it possesses chemical similarity to human bone, and most importantly its dissolution characteristics which allow for bone regeneration and growth, calcium phosphate holds a special consideration. Moreover, due to their interconnected pore structure, marine materials such as shells and coral exoskeletons show potential for applications in drug delivery due to their easy conversion to calcium phosphates with controllable dissolution rates. This chapter covers a range of current methods used specifically for natural materials that can be converted to calcium phosphates and mixed with polymeric materials as thin film or nanostructured drug, genes, protein and range of delivery and as anticancer chemotherapeutic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang MC, Ko CC, Douglas WH. Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde. Biomaterials. 2003;24:3087–94.

    Article  Google Scholar 

  2. Zhang W, Liao SS, Cui FZ. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater. 2003;15:3221–6.

    Article  Google Scholar 

  3. Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev. 2002;54:135–47.

    Article  Google Scholar 

  4. Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem. 2004;15:50–60.

    Article  Google Scholar 

  5. de Groot KR, Geesink R, Klein CPAT, Serekian P. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res. 1987;21:1375–81.

    Article  Google Scholar 

  6. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  Google Scholar 

  7. Choi AH, Ben-Nissan B, Matinlinna JP, Conway RC. Current perspectives: calcium phosphate nanocoatings and nanocomposite coatings in dentistry. J Dent Res. 2013;92:853–9.

    Article  Google Scholar 

  8. LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14:65–88.

    Article  Google Scholar 

  9. Ben-Nissan B, Choi AH. Sol-gel production of bioactive nanocoatings for medical applications: part I: an introduction. Nanomedicine. 2006;1:311–9.

    Article  Google Scholar 

  10. Choi AH, Ben-Nissan B. Sol-gel production of bioactive nanocoatings for medical applications: part II: current research and development. Nanomedicine. 2007;2:51–61.

    Article  Google Scholar 

  11. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    Article  Google Scholar 

  12. Giri S, Trewyn BG, Lin VS. Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. Nanomedicine. 2007;2:99–111.

    Article  Google Scholar 

  13. Wu C, Chang J, Zhai W, Ni S. A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering. J Mater Sci Mater Med. 2007;18:857–64.

    Article  Google Scholar 

  14. Victor SP, Sharma CP. Calcium phosphates as drug delivery systems. J Biomater Tissue Eng. 2012;2:269–79.

    Article  Google Scholar 

  15. Li J, Chen YC, Tseng YC, Mozumdar S, Huang L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release. 2010;142:416–21.

    Article  Google Scholar 

  16. Pittella F, Miyata K, Maeda Y, Suma T, Watanabe S, Chen Q, Christie RJ, Osada K, Nishiyama N, Kataoka K. Pancreatic cancer therapy by systemic administration of VEGF siRNA contained in calcium phosphate/charge-conversional polymer hybrid nanoparticles. J Control Release. 2012;161:868–74.

    Article  Google Scholar 

  17. Olton D, Li J, Wilson ME, Rogers T, Close J, Huang L, Kumta PN, Sfeir C. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: influence of the synthesis parameters on transfection efficiency. Biomaterials. 2007;28:1267–79.

    Article  Google Scholar 

  18. Liu Y, Wang T, He F, Liu Q, Zhang D, Xiang S, Su S, Zhang J. An efficient calcium phosphate nanoparticle-based nonviral vector for gene delivery. Int J Nanomedicine. 2011;6:721–7.

    Article  Google Scholar 

  19. Zhou C, Yu B, Yang X, Huo T, Lee LJ, Barth RF, Lee RJ. Lipid-coated nano-calcium-phosphate (LNCP) for gene delivery. Int J Pharm. 2010;392:201–8.

    Article  Google Scholar 

  20. Cao X, Deng W, Wei Y, Yang Y, Su W, Wei Y, Xu X, Yu J. Incorporating pTGF-β1/calcium phosphate nanoparticles with fibronectin into 3-dimensional collagen/chitosan scaffolds: efficient, sustained gene delivery to stem cells for chondrogenic differentiation. Eur Cell Mater. 2012;23:81–93.

    Article  Google Scholar 

  21. Sokolova V, Knuschke T, Buer J, Westendorf AM, Epple M. Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells. Acta Biomater. 2011;7:4029–36.

    Article  Google Scholar 

  22. Han JY, Tan TTY, Loo JSC. Utilizing inverse micelles to synthesize calcium phosphate nanoparticles as nano-carriers. J Nanopart Res. 2011;13:3441–54.

    Article  Google Scholar 

  23. Paul W, Sharma CP. Fatty acid conjugated calcium phosphate nanoparticles for protein delivery. Int J Appl Ceram Technol. 2010;7:129–38.

    Article  Google Scholar 

  24. Uskoković V, Batarni SS, Schweicher J, King A, Desai TA. Effect of calcium phosphate particle shape and size on their antibacterial and osteogenic activity in the delivery of antibiotics in vitro. ACS Appl Mater Interfaces. 2013;5:2422–31.

    Article  Google Scholar 

  25. Kester M, Heakal Y, Fox T, Sharma A, Robertson GP, Morgan TT, Altinoğlu EI, Tabaković A, Parette MR, Rouse SM, Ruiz-Velasco V, Adair JH. Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett. 2008;8:4116–21.

    Article  Google Scholar 

  26. Bastakoti BP, Hsu YC, Liao SH, Wu KC, Inoue M, Yusa S, Nakashima K, Yamauchi Y. Inorganic-organic hybrid nanoparticles with biocompatible calcium phosphate thin shells for fluorescence enhancement. Chem Asian J. 2013;8:1301–5.

    Article  Google Scholar 

  27. El-Ghannam A, Ricci K, Malkawi A, Jahed K, Vedantham K, Wyan H, Allen LD, Dréau D. A ceramic-based anticancer drug delivery system to treat breast cancer. J Mater Sci Mater Med. 2010;21:2701–10.

    Article  Google Scholar 

  28. Zhao XY, Zhu YJ, Chen F, Lu BQ, Qi C, Zhao J, Wu J. Calcium phosphate hybrid nanoparticles: self-assembly formation, characterization, and application as an anticancer drug nanocarrier. Chem Asian J. 2013;8:1306–12.

    Article  Google Scholar 

  29. Liang P, Zhao D, Wang CQ, Zong JY, Zhuo RX, Cheng SX. Facile preparation of heparin/CaCO3/CaP hybrid nano-carriers with controllable size for anticancer drug delivery. Colloids Surf B: Biointerfaces. 2013;102:783–8.

    Article  Google Scholar 

  30. Li WM, Chen SY, Liu DM. In situ doxorubicin-CaP shell formation on amphiphilic gelatin-iron oxide core as a multifunctional drug delivery system with improved cytocompatibility, pH-responsive drug release and MR imaging. Acta Biomater. 2013;9:5360–8.

    Article  Google Scholar 

  31. Rout SR, Behera B, Maiti TK, Mohapatra S. Multifunctional magnetic calcium phosphate nanoparticles for targeted platin delivery. Dalton Trans. 2012;41:10777–83.

    Article  Google Scholar 

  32. Mukesh U, Kulkarni V, Tushar R, Murthy RS. Methotrexate loaded self stabilized calcium phosphate nanoparticles: a novel inorganic carrier for intracellular drug delivery. J Biomed Nanotechnol. 2009;5:99–105.

    Article  Google Scholar 

  33. Chen Z, Li Z, Lin Y, Yin M, Ren J, Qu X. Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. Biomaterials. 2013;34:1364–71.

    Article  Google Scholar 

  34. Chiu D, Zhou W, Kitayaporn S, Schwartz DT, Murali-Krishna K, Kavanagh TJ, Baneyx F. Biomineralization and size control of stable calcium phosphate core-protein shell nanoparticles: potential for vaccine applications. Bioconjug Chem. 2012;23:610–7.

    Article  Google Scholar 

  35. Li S, Wang K, Chang KC, Zong M, Wang J, Cao YG, Bai YH, Wei TM, Zhang ZR. Preparation and evaluation of nano-hydroxyapatite/poly(styrene-divinylbenzene) porous microsphere for aspirin carrier. Sci China Chem. 2012;55:1134–9.

    Article  Google Scholar 

  36. Ignjatović N, Uskoković V, Ajduković Z, Uskoković D. Multifunctional hydroxyapatite and poly(D, L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. Mater Sci Eng C. 2013;33:943–50.

    Article  Google Scholar 

  37. Chen R, Qian Y, Li R, Zhang Q, Liu D, Wang M, Xu Q. Methazolamide calcium phosphate nanoparticles in an ocular delivery system. Yakugaku Zasshi. 2010;130:419–24.

    Article  Google Scholar 

  38. Ramachandran R, Paul W, Sharma CP. Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery. J Biomed Mater Res B Appl Biomater. 2009;88:41–8.

    Article  Google Scholar 

  39. Xu T, Zhang N, Nichols HL, Shi D, Wen X. Modification of nanostructured materials for biomedical applications. Mater Sci Eng C. 2007;27:579–94.

    Article  Google Scholar 

  40. Xu Q, Tanaka Y, Czernuszka JT. Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes. Biomaterials. 2007;28:2687–94.

    Article  Google Scholar 

  41. Anada T, Takeda Y, Honda Y, Sakurai K, Suzuki O. Synthesis of calcium phosphate-binding liposome for drug delivery. Bioorg Med Chem Lett. 2009;19:4148–50.

    Article  Google Scholar 

  42. Zhu CT, Xu YQ, Shi J, Li J, Ding J. Liposome combined porous β-TCP scaffold: preparation, characterization, and anti-biofilm activity. Drug Deliv. 2010;17:391–8.

    Article  Google Scholar 

  43. Huang JS, Liu KM, Chen CC, Ho KY, Wu YM, Wang CC, Cheng YM, Ko WL, Liu CS, Ho YP, Wang YP, Hong K. Liposomes-coated hydroxyapatite and tricalcium phosphate implanted in the mandibular bony defect of miniature swine. Kaohsiung J Med Sci. 1997;13:213–28.

    Google Scholar 

  44. Wang G, Babadağli ME, Uludağ H. Bisphosphonate-derivatized liposomes to control drug release from collagen/hydroxyapatite scaffolds. Mol Pharm. 2011;8:1025–34.

    Article  Google Scholar 

  45. Al-Jamal WT, Kostarelos K. Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine. 2007;2:85–98.

    Article  Google Scholar 

  46. Ben-Nissan B, Macha I, Cazalbou S, Choi AH. Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis. Nanomedicine. 2016;11:531–44.

    Article  Google Scholar 

  47. Choi AH, Ben-Nissan B, Conway RC, Macha I. Advances in calcium phosphate nanocoatings and nanocomposites. In: Ben-Nissan B, editor. Advances in calcium phosphate biomaterials, Springer series in biomaterials science and engineering (SSBSE). Berlin: Springer; 2014. p. 485–509.

    Chapter  Google Scholar 

  48. Ben-Nissan B, Green DW. Marine materials in drug delivery and tissue engineering: from natural role models, to bone regeneration and repair and slow delivery of therapeutic drugs, proteins and genes. In: Kim S-K, editor. Marine biomaterials. Boca Raton: Taylor and Francis/CSR Books; 2013. p. 575–602.

    Chapter  Google Scholar 

  49. Green DW, Li G, Milthrope B, Ben-Nissan B. Adult stem cell coatings using biomaterials for regenerative medicine. Mater Today. 2012;15:61–8.

    Article  Google Scholar 

  50. Ben-Nissan B. Natural bioceramic: from coral to bone and beyond. Curr Opin Solid State Mater Sci. 2003;7:283–8.

    Article  Google Scholar 

  51. Mann S. Mineralization in biological systems. Struct Bond. 1983;54:125.

    Article  Google Scholar 

  52. Gonzalez-McQuire R, Green D, Walsh D, Hall S, Chane-Ching JY, Oreffo RO, Mann S. Fabrication of hydroxyapatite sponges by dextran sulfate/amino acid templating. Biomaterials. 2005;26:6652–6.

    Article  Google Scholar 

  53. Green D, Walsh D, Yang X, Mann S, Oreffo ROC. Stimulation of human bone marrow stromal cells using growth factor-encapsulated calcium carbonate porous microspheres. J Mater Chem. 2004;14:2206–12.

    Article  Google Scholar 

  54. Walsh D, Mann S. Feigning nature’s sculptures. Chem Br. 1996;32:31–4.

    Google Scholar 

  55. Walsh D, Boanini E, Tanaka J, Mann S. Synthesis of tri-calcium phosphate sponges by interfacial deposition and thermal transformation of self-supporting inorganic films. J Mater Chem. 2005;15:1043–8.

    Article  Google Scholar 

  56. Hall SR, Swinerd VM, Newby FN, Collins AM, Mann S. Fabrication of porous titania (brookite) microparticles with complex morphology by sol-gel replication of pollen grains. Chem Mater. 2006;18:598–600.

    Article  Google Scholar 

  57. Green DW. Bio-inspired ceramic structures: from invertebrate marine skeletons to biomimetic crystal engineering. J Aust Ceram Soc. 2004;40:1–7.

    Google Scholar 

  58. Parker AR, Martini N. Structural color in animals-simple to complex optics. Opt Laser Technol. 2006;38:315–22.

    Article  Google Scholar 

  59. Ben-Nissan B, Green DW. Marine structures as templates for biomaterials. In: Ben-Nissan B, editor. Advances in calcium phosphate biomaterials, springer series in biomaterials science and engineering (SSBSE). Berlin: Springer; 2014. p. 391–414.

    Chapter  Google Scholar 

  60. Choi AH, Cazalbou S, Ben-Nissan B. Biomimetics and marine materials in drug delivery and tissue engineering. In: Antoniac IV, editor. Handbook of bioceramics and Biocomposites. Berlin: Springer; 2015. p. 1–24.

    Chapter  Google Scholar 

  61. Mock T, Samanta MP, Iverson V, Berthiaume C, Robison M, Holtermann K, Durkin C, Bondurant SS, Richmond K, Rodesch M, Kallas T, Huttlin EL, Cerrina F, Sussman MR, Armbrust EV. Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses. Proc Natl Acad Sci U S A. 2008;105:1579–84.

    Article  Google Scholar 

  62. Belegratis MR, Schmidt V, Nees D, Stadlober B, Hartmann P. Diatom-inspired templates for 3D replication: natural diatoms versus laser written artificial diatoms. Bioinspir Biomi. 2014;9:016004.

    Article  Google Scholar 

  63. Kim ES. Directed evolution: a historical exploration into an evolutionary experimental system of nanobiotechnology, 1965–2006. Minerva. 2008;46:463–84.

    Article  Google Scholar 

  64. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8:1401–21.

    Article  Google Scholar 

  65. Fuhrman J, McCallum K, Davis A. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Appl Environ Microbiol. 1995;61:4517.

    Google Scholar 

  66. Rossbach M, Kniewald G. Concepts of marine specimen banking. Chemosphere. 1997;34:1997–2010.

    Article  Google Scholar 

  67. Leupold J, Barfield W, An Y, Hartsock L. A comparison of ProOsteon, DBX, and collagraft in a rabbit model. J Biomed Mater Res B Appl Biomater. 2006;79:292–7.

    Article  Google Scholar 

  68. Luesch H, Harrigan G, Goetz G, Horgen F. The cyanobacterial origin of potent anticancer agents originally isolated from sea hares. Curr Med Chem. 2002;9:1791–806.

    Article  Google Scholar 

  69. Pettit GR, Xu JP, Hogan F, Williams MD, Doubek DL, Schmidt JM, Cerny RL, Boyd MR. Isolation and structure of the human cancer cell growth inhibitory cyclodepsipeptide dolastatin 16. J Nat Prod. 1997;60:752–4.

    Article  Google Scholar 

  70. Simmons TL, Coates RC, Clark BR, Engene N, Gonzalez D, Esquenazi E, Dorrestein PC, Gerwick WH. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc Natl Acad Sci U S A. 2008;105:4587–94.

    Article  Google Scholar 

  71. Simmons T, Andrianasolo E, McPhail K, Flatt P, Gerwick W. Marine natural products as anticancer drugs. Mol Cancer Ther. 2005;4:333–42.

    Google Scholar 

  72. Sithranga Boopathy N, Kathiresan K. Anticancer drugs from marine flora: an overview. J Oncol. 2010;2010:214186.

    Article  Google Scholar 

  73. Stanley G. The evolution of modern corals and their early history. Earth Sci Rev. 2003;60:195–225.

    Article  Google Scholar 

  74. Sethmann I, Worheide G. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Micron. 2008;39:209–28.

    Article  Google Scholar 

  75. Wilt F, Kilian C, Livingston B. Development of calcareous skeletal elements in invertebrates. Differentiation. 2003;71:237–50.

    Article  Google Scholar 

  76. Laine J, Labady M, Albornoz A, Yunes S. Porosities and pore sizes in coralline calcium carbonate. Mater Charact. 2008;59:1522–5.

    Article  Google Scholar 

  77. Chou J, Valenzuela S, Bishop D, Ben-Nissan B, Milthorpe B. Strontium- and magnesium-enriched biomimetic β-TCP macrospheres with potential for bone tissue morphogenesis. J Tissue Eng Regen Med. 2012;8:771–8.

    Article  Google Scholar 

  78. Demers C, Hamdy C, Corsi K, Chellat F, Tabrizian M, Yahia L. Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng. 2002;12:15–35.

    Google Scholar 

  79. Baudet-Pommel M, Collangettes-Peyrat D, Couvet-Lejczyk V. Autotransplantation: clinical results, radiography, orthodontics, criteria for success. Acta Odontol. 1988;163:463–72.

    Google Scholar 

  80. Patat J, Guillemin G. Natural coral used as a replacement biomaterial in bone grafts. Ann Chir Plast Esthet. 1989;34:221–5.

    Google Scholar 

  81. Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone. 2008;42:129–38.

    Article  Google Scholar 

  82. LeGeros R. Apatites in biological systems. Prog Cryst Growth Charact. 1981;41:1–45.

    Article  Google Scholar 

  83. Papacharalambous S, Anastasoff K. Natural coral skeleton used as onlay graft for contour augmentation of the face. A preliminary report. Int J Oral Maxillofac Surg. 1993;22:260–4.

    Article  Google Scholar 

  84. Chou J, Ben-Nissan B, Choi A, Wuhrer R, Green D. Conversion of coral sand to calcium phosphate for biomedical application. J Aust Ceram Soc. 2007;43:44–8.

    Google Scholar 

  85. Ben-Nissan B, Milev A, Vago R. Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials. 2004;25:4971–5.

    Article  Google Scholar 

  86. Roy D, Linnehan S. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature. 1974;247:220–2.

    Article  Google Scholar 

  87. Damron T, Lisle J, Craig T, Wade M, Silbert W, Cohen H. Ultraporous β-tricalcium phosphate alone or combined with bone marrow aspirate for benign cavitary lesions: comparison in a prospective randomized clinical trial. J Bone Joint Surg Am. 2013;95:158–66.

    Article  Google Scholar 

  88. Guyton G, Miller S. Stem cells in bone grafting: trinity allograft with stem cells and collagen/β-tricalcium phosphate with concentrated bone marrow aspirate. Foot Ankle Clin. 2010;15:611–9.

    Article  Google Scholar 

  89. Barber F, Dockery W. Long-term absorption of β-tricalcium phosphate poly-L-lactic acid interference screws. Arthroscopy. 2008;24:441–7.

    Article  Google Scholar 

  90. Somanathan R, Simunek A. Evaluation of the success of β-tricalcium phosphate and deproteinized bovine bone in maxillary sinus augmentation using histomorphometry: a review. Acta Med. 2006;49:87–9.

    Google Scholar 

  91. Florczyk SJ, Leung M, Jana S, Li Z, Bhattarai N, Huang JI, Hopper RA, Zhang M. Enhanced bone tissue formation by alginate gel-assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. J Biomed Mater Res A. 2012;100:3408–15.

    Article  Google Scholar 

  92. Zhou J, Fang T, Wang Y, Dong J. The controlled release of vancomycin in gelatin/β-TCP composite scaffolds. J Biomed Mater Res A. 2012;100:2295–301.

    Google Scholar 

  93. La W, Kwon S, Lee T, Yang H, Park J, Kim B. The effect of the delivery carrier on the quality of bone formed via bone morphogenetic protein-2. Artif Organs. 2012;36:642–7.

    Article  Google Scholar 

  94. Suarez-Gonzalez D, Lee J, Lan Levengood S, Vanderby RJ, Murphy W. Mineral coatings modulate β-TCP stability and enable growth factor binding and release. Acta Biomater. 2012;8:1117–24.

    Article  Google Scholar 

  95. Paschalis E, Wikiel K, Nancollas G. Dual constant composition kinetics characterization of apatitic surfaces. J Biomed Mater Res. 1994;28:1411–8.

    Article  Google Scholar 

  96. Tang R, Hass M, Wu W, Gulde S, Nancollas G. Constant composition dissolution of mixed phases. II. Selective dissolution of calcium phosphates. J Colloid Interface Sci. 2003;260:379–84.

    Article  Google Scholar 

  97. LeGeros R, Lin S, Rohanizadeh R, Mijares D, LeGeros J. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14:201–9.

    Article  Google Scholar 

  98. Chou J, Ito T, Bishop D, Otsuka M, Ben-Nissan B, Milthorpe B. Controlled release of simvastatin from biomimetic β-TCP drug delivery system. PLoS One. 2013;8:e54676.

    Article  Google Scholar 

  99. Chou J, Ito T, Otsuka M, Ben-Nissan B, Milthorpe B. The effectiveness of the controlled release of simvastatin from β-TCP macrosphere in the treatment of OVX mice. J Tissue Eng Regen Med. 2016;10:E195–203.

    Article  Google Scholar 

  100. Chou J, Ito T, Otsuka M, Ben-Nissan B, Milthorpe B. Simvastatin-loaded β-TCP drug delivery system induces bone formation and prevents rhabdomyolysis in OVX mice. Adv Healthc Mater. 2013;2:678–81.

    Article  Google Scholar 

  101. Chou J, Ben-Nissan B, Green D, Valenzuela S, Kohan L. Targeting and dissolution characteristics of bone forming and antibacterial drugs by harnessing the structure of micro-spherical shells from coral beach sand. Adv Eng Mater. 2010;13:93–9.

    Article  Google Scholar 

  102. Kawamura H, Ito A, Miyakawa S, Layrolle P, Ojima K, Ichinose N, Tateishi T. Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res. 2000;50:184–90.

    Article  Google Scholar 

  103. Relea P, Revilla M, Ripoll E, Arribas I, Villa LF, Rico H. Zinc, biochemical markers of nutrition, and type I osteoporosis. Age Ageing. 1995;24:303–7.

    Article  Google Scholar 

  104. Yamaguchi M, Oishi H, Suketa Y. Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol. 1987;36:4007–12.

    Article  Google Scholar 

  105. Moonga B, Dempster D. Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res. 1995;10:453–7.

    Article  Google Scholar 

  106. Hernández-Sierra JF1, Ruiz F, Pena DC, Martínez-Gutiérrez F, Martínez AE, Guillén Ade J, Tapia-Pérez H, Castañón GM. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine. 2008;4:237–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besim Ben-Nissan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Choi, A.H., Macha, I.J., Akyol, S., Cazalbou, S., Ben-Nissan, B. (2017). Nanostructured Calcium Phosphates for Drug, Gene, DNA and Protein Delivery and as Anticancer Chemotherapeutic Devices. In: Kaur, G. (eds) Clinical Applications of Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-56059-5_6

Download citation

Publish with us

Policies and ethics