Skip to main content

Calcium Phosphate Cements for Medical Applications

  • Chapter
  • First Online:

Abstract

This chapter presents an overview of calcium phosphate cements (CPCs) used for medical applications. The hardening mechanism and the two types of CPCs apatite and brushite, are discussed. A description of the main properties (and testing methods) of CPCs such as setting time, cohesion time, mechanical properties and injectability and different strategies adopted to improve them are reported. The chapter includes a description of the preparation steps of a typical cement before implantation in the bone defect and some examples of current medical applications and limitations of CPCs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. http://dictionary.cambridge.org/dictionary/english/cement. Last access 16 Jan 2017.

  2. Castaño O, Planell JA. Cements (chapter 8). In: Vallet-Regi M, editor. Bio-ceramics with clinical applications. Hoboken: Wiley; 2014. p. 195–248.

    Google Scholar 

  3. Cama G. Calcium phosphate cements for bone regeneration (chapter 1). In: Dubruel P, Vlierberghe SV, editors. Biomaterials for bone regeneration: Novel techniques and applications. Burlington: Elsevier; 2014. p. 3–25.

    Chapter  Google Scholar 

  4. Dorozhkin SV. Calcium orthophosphate cements and concretes. Materials. 2009;2(1):221–91.

    Article  Google Scholar 

  5. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured. 2000;31:S37–47.

    Article  Google Scholar 

  6. Ishikawa K. Bioactive ceramics: cements (chapter 1.116). In: Ducheyne P, editor. Comprehensive biomaterials, Metallic, ceramic and polymeric biomaterials, vol. 1. Amsterdam: Elsevier; 2011. p. 267–84.

    Chapter  Google Scholar 

  7. Sanzana ES, Navarro M, Macule F, Suso S, Planell JA, Ginebra MP. Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes. Acta Biomater. 2008;4(6):1924–33.

    Google Scholar 

  8. Zhang JT, Tancret F, Bouler JM. Fabrication and mechanical properties of calcium phosphate cements (CPC) for bone substitution. Mater Sci Eng C. 2011;31(4):740–7.

    Article  Google Scholar 

  9. Xu HHK, Carey LE, Simon CG, Takagi S, Chow LC. Premixed calcium phosphate cements: synthesis, physical properties, and cell cytotoxicity. Dent Mater. 2007;23(4):433–41.

    Article  Google Scholar 

  10. Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 2012;8:963–77.

    Article  Google Scholar 

  11. Sariibrahimoglu K, Wolke JGC, Leeuwenburgh SCG, Jansen JA. Calcium phosphates (chapter 3). In: Fisher JP, Mikos AG, Bronzino JD, Peterson DR, editors. Tissue engineering: principles and practices. London: CRC Press; 2012. p. 1–22.

    Chapter  Google Scholar 

  12. Zhao J, Yu L, Sun W-b, Zhang H. Amorphous calcium phosphate and its application in dentistry. Chem Cent J. 2011;5:40.

    Article  Google Scholar 

  13. Neira MIS. PhD thesis: an efficient approach to the synthesis of a calcium phosphate bone-cement and its reinforcement by hydroxyapatite crystals of various particle morphologies, University Santiago de Compostela, Spain, 2008, p. 44

    Google Scholar 

  14. Ishikawa K. Bone substitute fabrication based on dissolution-precipitation reactions. Materials. 2010;3:1138–55.

    Article  Google Scholar 

  15. Zhang J, Liu W, Schnitzler V, Tancret F, Bouler J-M. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater. 2014;10:1035–49.

    Article  Google Scholar 

  16. Sergey V. Dorozhkin, calcium orthophosphate cements for biomedical application. J Mater Sci. 2008;43:3028–57.

    Article  Google Scholar 

  17. Ishikawa K. Calcium phosphate cement (chapter 7). In: Ben-Nissan B, editor. Advances in calcium phosphate biomaterials. Berlin: Springer; 2014. p. 199–227.

    Chapter  Google Scholar 

  18. Draft BS ISO 18531 Implants for surgery – calcium phosphate bioceramics – characterization of hardening bone paste materials.

    Google Scholar 

  19. ASTM C191−13, Standard test methods for time of setting of hydraulic cement by Vicat Needle.

    Google Scholar 

  20. ASTM C266–15, Standard test method for time of setting of hydraulic-cement paste by Gillmore Needles.

    Google Scholar 

  21. http://matest.com/en/Products/--1/Macro-Category/vicat-apparatus/e055n-vicat-apparatus. Last access on 15 Jan 2017.

  22. http://matest.com/en/Products/--1/Macro-Category/vicat-apparatus/e058-gillmore-apparatus-0. Last access on 15 Jan 2017.

  23. Bohner M, Doebelin N, Baroud G. Theoretical and experimental approach to test the cohesion of calcium phosphate pastes. Eur Cells Mater. 2006;12:26–35.

    Article  Google Scholar 

  24. An J, Wolke JGC, Jansen JA, Leeuwenburgh SCG. Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements. J Mater Sci Mater Med. 2016;27:58.

    Article  Google Scholar 

  25. Chen G, Li W, Yu X, Sun K. Study of the cohesion of TTCP/DCPA phosphate cement through evolution of cohesion time and remaining percentage. J Mater Sci. 2009;44:828–34.

    Article  Google Scholar 

  26. http://www.stryker.com/en-us/products/Orthopaedics/BoneSubstitutes/Hydroset/index.htm. Last access 15 Jan 2017.

  27. Friedman CD, Costantino PD, Takagi S, Chow LC. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res. 1998;43(4):428–32.

    Article  Google Scholar 

  28. http://www.stryker.com/stellent/groups/public/documents/web_prod/023526.pdf. Last access 15 Jan 2017.

  29. Seitz IA, Teven CM, Reid RR. Repair and grafting of bone (chapter 21). In: Neligan PC, editor. Plastic surgery, Principles, vol. 1. London/New York: Elsevier; 2013. p. 425–63.

    Google Scholar 

  30. O’Hara R, Buchanan F, Dunne N. Injectable calcium phosphate cements for spinal bone repair (chapter 2). In: Dubruel P, Van Vlierberghe S, editors. Biomaterials for bone regeneration: novel techniques and applications. Burlington: Elsevier; 2014. p. 26–61.

    Chapter  Google Scholar 

  31. Verlaan JJ, Oner FC, Dhert WJA. Anterior spinal column augmentation with injectable bone cements. Biomaterials. 2006;27(3):290–301.

    Article  Google Scholar 

  32. Jack V, Buchanan V, Dunne FJ. Particle attrition of alpha-tricalcium phosphate: effect on mechanical, handling, and injectability properties of calcium phosphate cements. Proc Inst Mech Eng H-J Eng Med. 2008;222(H1):19–28.

    Article  Google Scholar 

  33. Barralet JE, Grover LM, Gbureck U. Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement. Biomaterials. 2004;25:2197–203.

    Article  Google Scholar 

  34. Xu HHK, Quinn JB. Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity. Biomaterials. 2002;23(1):193–202.

    Article  Google Scholar 

  35. Zuo Y, Yang F, Wolke JGC, Li Y, Jansen JA. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomater. 2010;6(4):1238–47.

    Article  Google Scholar 

  36. http://emea.depuysynthes.com/hcp/biomaterials/products/qs/chronos-inject. Last access 15 Jan 2017.

  37. http://www.groupfhortho.com/our-products/bone-substitutes/eurobone-2/. Last access 15 Jan 2017.

  38. Low KL, Tan SH, Zein SHS, Roether JA, Mourino V, Boccaccini AR. Calcium phosphate-based composites as injectable bone substitute materials. J Biomed Mater Res. 2010;94(1):273–86.

    Google Scholar 

  39. http://www.synthes.com/MediaBin/US%20DATA/Product%20Support%20Materials/Technique%20Guides/MXTGFastPuttyJ4261F.pdf. Last access 15 Jan 2017.

  40. https://cmf.stryker.com/products/directinject#. Last access 15 Jan 2017.

    Google Scholar 

  41. Ginebra MP, Canal C, Espanol M, Pastorino D, Montufar EB. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev. 2012;64(12):1090–110.

    Article  Google Scholar 

  42. Vorndran E, Geffers M, Ewald A, Lemm M, Nies B, Gbureck U. Ready-to-use injectable calcium phosphate bone cement paste as drug carrier. Acta Biomater. 2013;9(12):9558–67.

    Article  Google Scholar 

  43. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release. 2006;113(2):102–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Bretcanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ozdemir, F., Evans, I., Bretcanu, O. (2017). Calcium Phosphate Cements for Medical Applications. In: Kaur, G. (eds) Clinical Applications of Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-56059-5_4

Download citation

Publish with us

Policies and ethics