Skip to main content

Apatites for Orthopedic Applications

  • Chapter
  • First Online:
Clinical Applications of Biomaterials

Abstract

The complex nature of the bone complicates its reconstruction and arises the use of biomaterials for this purpose. The materials should have similar properties with the bone and can be used in different application. Particularly, beta-tricalcium phosphate (β-TCP) and hydroxyapatite (HAp) are biocompatible, bioactive, and osteoconductive materials having similar properties with the bone. In this review, the applications of tricalcium phosphate and hydroxyapatite in orthopedics are given in terms of graft, carrier, and coating materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chu PK, Liu X. Biomaterials fabrication and processing handbook. Boca Raton: CRC Press; 2008.

    Google Scholar 

  2. Kankilic B. Analysis of the effects of vancomycin containing bioceramic/polymer composites on biofılm prevention, biocompatibility and osteogenic modification of mesenchymal stem cells. Thesis of Philosophy of Doctorate in Biotechnology, Middle East Technical University, Ankara Turkey, September 2015.

    Google Scholar 

  3. Nath S, Basu B, Sinha A. A comparative study of conventional sintering with microwave sintering of hydroxyapatite synthesized by chemical route trends. Biomater Artif Organs. 2006;19(2):93–8.

    Google Scholar 

  4. Thamaraiselvi TV, Rajeswari S. Biological evaluation of bioceramic materials – a review. Trends Biomater Artif Organs. 2004;18(1):9–17.

    Google Scholar 

  5. Amy J, Johnson W, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 2011;7(1):16–30.

    Article  Google Scholar 

  6. Mehdikhani B, Borhani GH. Synthesis nano bio-ceramic powder β-Ca2P2O7. J Ceram Process Res. 2015;16(3):308–12.

    Google Scholar 

  7. Mirhadi B, Mehdikhani B, Askari N. Synthesis of nano-sized β-tricalcium phosphate via wet precipitation. Proc Appl Ceram. 2011;5(4):193–8.

    Article  Google Scholar 

  8. Kankilic B, Bayramli E, Kilic E, Dagdeviren S, Korkusuz F. Vancomycin containing PLLA/b-TCP controls MRSA in vitro. Clin Orthop Relat Res. 2011;469:3222–8.

    Article  Google Scholar 

  9. Kannan S, Goetz-Neunhoeffer F, Neubauer J, Pina S, Torres PMC, Ferreira JMF. Synthesis and structural characterization of strontium -and magnesium-co-substituted b-tricalcium phosphate. Acta Biomater. 2010;6:571–6.

    Article  Google Scholar 

  10. Dessi M, Borzacchiello A, Mohamed THA, Abdel-Fattah WI, Ambrosio L. Novel biomimetic thermosensitive b-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. J Biomed Mater Res Part A. 2013;101A:2984–93.

    Article  Google Scholar 

  11. Daculsi G, Goyenvalle E, Cognet R, Aguado E, Suokas EO. Osteoconductive properties of poly(96L/4D-lactide)/beta-tricalcium phosphate in long term animal model. Biomaterials. 2011;32:3166–77.

    Article  Google Scholar 

  12. Bin Liu PD, Deng-xing Lun MSC. Current application of b-tricalcium phosphate composites in orthopaedics. Orthop Surg. 2012;4:139–44.

    Google Scholar 

  13. Zhang X, Cai Q, Liu H, Zhang S, Wei Y, Yang X, Lin Y, Yang Z, Deng X. Calcium ion release and osteoblastic behavior of gelatin/beta-tricalcium phosphate composite nanofibers fabricated by electrospinning. Mater Lett. 2012;73:172–5.

    Article  Google Scholar 

  14. Damlar I, Erdogan O, Tatli U, Arpag OF, Gormez U, Ustun Y. Comparison of osteoconductive properties of three different b-tricalcium phosphate graft materials: a pilot histomorphometric study in a pig model. J Craniomaxillofac Surg. 2015;43:175–80.

    Article  Google Scholar 

  15. Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone. 2010;46:386–95.

    Article  Google Scholar 

  16. Lee JH,Ryu MY, Baek H, Lee K, Seo JH, Lee HK. Fabrication and evaluation of porous beta-tricalcium phosphate/hydroxyapatite (60/40) composite as a bone graft extender using rat calvarial bone defect model. Sci World J. 2013;2013:481789. 9.

    Google Scholar 

  17. Cao L, Duan PG, Wang HR, Li XL, Yuan FL, Fan ZY, Li SM, Dong J. Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized b-tricalcium phosphate scaffold. Int J Nanomedicine. 2012;7:5881–8.

    Article  Google Scholar 

  18. Zhao XF, Li XD, Kang YQ, Yuan Q. Improved biocompatibility of novel poly(L-lactic acid)/b-tricalcium phosphate scaffolds prepared by an organic solvent-free method. Int J Nanomedicine. 2011;6:1385–90.

    Google Scholar 

  19. Castilho M, Rodrigues J, Pires I, Gouveia B, Pereira M, Moseke C, Groll J, Ewald A, Vorndran E. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication. 2015;7:015004.

    Article  Google Scholar 

  20. Kankilic B, Bilgic E, Korkusuz P, Korkusuz F. Vancomycin containing PLLA/β-TCP controls experimental osteomyelitis in vivo. J Orthop Surg Res. 2014;9:114.

    Article  Google Scholar 

  21. Ahola N, Veiranto M, Männistö N, Karp M, Rich J, Efimov A, Kellomäki M. Processing and sustained in vitro release of rifampicin containing composites to enhance the treatment of osteomyelitis. Biomatter. 2012;2(4):213–25.

    Article  Google Scholar 

  22. Makarov C, Berdicevsky I, Raz-Pasteur A, Gotman I. In vitro antimicrobial activity of vancomycin-eluting bioresorbable β-TCP-polylactic acid nanocomposite material for load-bearing bone repair. J Mater Sci Mater Med. 2013;24(3):679–87.

    Article  Google Scholar 

  23. Xie XH, Wang XL, Zhang G, He YX, Leng Y, Tang TT, Qin L. Biofabrication of a PLGA–TCP-based porous bioactive bone substitute with sustained release of icaritin. J Tissue Eng Regen Med. 2015;9(8):961–72.

    Article  Google Scholar 

  24. Vahabzadeh S, Edgington J, Bose S. Tricalcium phosphate and tricalcium phosphate/polycaprolactone particulate composite for controlled release of protein. Mater Sci Eng C. 2013;33(7):3576–82.

    Article  Google Scholar 

  25. Kundu B, Nandi SK, Roy S, Dandapat N, Soundrapandian C, Datta S, Basu D. Systematic approach to treat chronic osteomyelitis through ceftriaxone–sulbactam impregnated porous β-tri calcium phosphate localized delivery system. Ceram Int. 2012;38(2):1533–48.

    Article  Google Scholar 

  26. Zhou J, Fang T, Wang Y, Dong J. The controlled release of vancomycin in gelatin/b-TCP composite scaffolds. J Biomed Mater Res Part A. 2012;100A:2295–301.

    Article  Google Scholar 

  27. Seidenstuecker M, Mrestani Y, Neubert RH, Bernstein A, Mayr HO. Release kinetics and antibacterial efficacy of microporous β-TCP coatings. J Nanomater. 2013;2013:13.

    Article  Google Scholar 

  28. Sohier J, Daculsi G, Sourice S, De Groot K, Layrolle P. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering. J Biomed Mater Res A. 2010;92(3):1105–14.

    Google Scholar 

  29. Mina A, Caicedo HH, Uquillas JA, Aperador W, Gutiérrez O, Caicedo JC. Biocompatibility behavior of β–tricalcium phosphate-chitosan coatings obtained on 316L stainless steel. Mater Chem Phys. 2016;175:68–80.

    Article  Google Scholar 

  30. Chen M, Le DQ, Kjems J, Bünger C, Lysdahl H. Improvement of distribution and osteogenic differentiation of human mesenchymal stem cells by hyaluronic acid and β-tricalcium phosphate-coated polymeric scaffold in vitro. Bio Res Open Access. 2015;4(1):363–73.

    Article  Google Scholar 

  31. Chai H, Guo L, Wang X, Gao X, Liu K, Fu Y, Yang K. In vitro and in vivo evaluations on osteogenesis and biodegradability of a β-tricalcium phosphate coated magnesium alloy. J Biomed Mater Res A. 2012;100(2):293–304.

    Article  Google Scholar 

  32. Fox K, Tran PA, Tran N. Recent advances in research applications of nanophase hydroxyapatite. ChemPhysChem. 2012;13:2495–506.

    Article  Google Scholar 

  33. Zakaria SM, Sharif Zein SH, Othman MR, Yang F, Jansen JA. Tissue Eng, Part B Rev. 2013;19(5):431–41.

    Article  Google Scholar 

  34. Chavan PN, Bahir MM, Mene RU, Mahabole MP, Khairnar RS. Study of nanobiomaterial hydroxyapatite in simulated body fluid: formation and growth of apatite. Mater Sci Eng B. 2010;168:224–30.

    Article  Google Scholar 

  35. Akram M, Ahmed R, Shakir I, et al. Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci. 2014;49:1461.

    Article  Google Scholar 

  36. Wu S-C, Hsu H-C, Hsu S-K, Chang Y-C, Ho W-F. Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment. J Asian Ceramic Soc. 2016;4(1):85–90.

    Article  Google Scholar 

  37. Tas CA, Korkusuz F, Timucin M, Akkas N. (1997). An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics. J Mater Sci Mater Med. 1997;8(2):91–6.

    Google Scholar 

  38. Çiftci E, Kose S, Korkusuz P, Timucin M, Korkusuz F. Boron containing nano hydroxyapatites (B-n-HAp) stimulate mesenchymal stem cell adhesion, proliferation and differentiation. Key Eng Mater. 2015;631:373–8.

    Article  Google Scholar 

  39. Korkusuz F, Korkusuz P. Use of hydroxyapatite ceramics in orthopedics. Acta Orthop Traumatol Turc. 1997;31:63–7.

    Google Scholar 

  40. Ding Z, Fan Z, Huang X, Lu Q, Xu W, Kaplan DL. Silk-hydroxyapatite nanoscale scaffolds with programmable growth factor delivery for bone repair. ACS Appl Mater Interfaces. 2016;8(37):24463–70.

    Article  Google Scholar 

  41. Parent M, Magnaudeix A, Delebassée S, Sarre E, Champion E, Viana Trecant M, Damia C. Hydroxyapatite microporous bioceramics as vancomycin reservoir: antibacterial efficiency and biocompatibility investigation. J Biomater Appl. 2016;31(4):488–98.

    Article  Google Scholar 

  42. Huang D, Zuo Y, Zou Q, Zhang L, Li J, Cheng L, Shen J, Li Y. Antibacterial chitosan coating on nano-hydroxyapatite/polyamide66 porous bone scaffold for drug delivery. J Biomater Sci Polymer Edition. 2011;22(7):931–44.

    Article  Google Scholar 

  43. Dasgupta S, Banerjee SS, Bandyopadhyay A, Bose S. Zn- and Mg-doped hydroxyapatite nanoparticles for controlled release of protein. Langmuir. 2010;26:4958–64.

    Article  Google Scholar 

  44. Tavakoli-darestani R, Manafi-rasi A, Kamrani-rad A. Dexamethasone-loaded hydroxyapatite enhances bone regeneration in rat calvarial defects. A Mol Biol Rep. 2014;41:423. doi:10.1007/s11033-013-2876-9.

    Article  Google Scholar 

  45. Lozano D, Sánchez-Salcedo S, Portal-Núñez S, Vila M, López-Herradón A, Ardura JA, Mulero F, Gómez-Barrena E, Vallet-Regí M, Esbrit P. Parathyroid hormone-related protein (107-111) improves the bone regeneration potential of gelatin–glutaraldehyde biopolymer-coated hydroxyapatite. Acta Biomater. 2014;10:3307–16.

    Article  Google Scholar 

  46. Suchı T, Šupová M, Klapková E, Hornı L, Rıglová S, Žaloudková M, Braun M, Sucharda Z, Ballay R, Veselı J, Chlup H, Denk F. The sustainable release of vancomycin and its degradation products from nanostructured collagen/hydroxyapatite composite layers. J Pharm Sci. 2016;105:1288e1294.

    Google Scholar 

  47. Sirin HT, Vargel I, Kutsal T, Korkusuz P, Piskin E. Ti implants with nanostructured and HA-coated surfaces for improved osseointegration. Artif Cells, Nanomed Biotechnol. 2016;44(3):1023–30. doi:10.3109/21691401.2015.1008512.

    Article  Google Scholar 

  48. Eto S, Kawano S, Someya S, Miyamoto H, Sonohata M, Mawatari M. First clinical experience with thermal sprayed silver oxide-containing hydroxyapatite coating implant. J Arthroplast. 2016; doi:10.1016/j.arth.2015.12.034.

    Google Scholar 

  49. Patel A, Ghai A, Anand A. Clinical benefit of hydroxyapatite-coated versus uncoated external fixation: a systematic review. Int J Orthod. 2016;183(3):581–590. 2313–1462. doi:10.17554/j.issn.2313-1462.2016.03.163.

    Article  Google Scholar 

  50. Li K, Shen Q, Xie Y, You M, Huang L, Zheng X. Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic activity of mesenchymal stem cell and macrophage polarization. J Biomater Appl. 2016;31(7):1–15.

    Google Scholar 

  51. Gryshkov O, Klyui NI, Temchenko VP, Kyselov VS, Chatterjee A, Belyaev AE, Lauterboeck L, Iarmolenko D, Glasmacher B. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. Mater Sci Eng C. 2016;68:143–52.

    Article  Google Scholar 

  52. Lee JH, Jang HL, Lee KM, Baek H-R, Jin K, Noh JH. Cold-spray coating of hydroxyapatite on a three-dimensional polyetheretherketone implant and its biocompatibility evaluated by in vitro and in vivo minipig model. J Biomed Mater Res Part B Appl Biomater. 2017;105:647–57.

    Google Scholar 

  53. Tao ZS, Zhou WS, He XW, Liu W, Bai BL, Zhou Q, Huang ZL, Tu KK, Li H, Sun T, Lv YX, Cui W, Yang L. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater Sci Eng C. 2016;62:226–32.

    Article  Google Scholar 

  54. Yoshii T, Hirai T, Sakai K, Sotome S, Enomoto M, Yamada T, Inose H, Kato T, Kawabata S, Okawa A. Anterior cervical corpectomy and fusion using a synthetic hydroxyapatite graft for ossification of the posterior longitudinal ligament. Orthopedics. 2016; doi:10.3928/01477447-20161208-02.

    Google Scholar 

  55. Uemura K, Kanamori A, Aoto K, Yamazaki M, Sakane M. Novel unidirectional porous hydroxyapatite used as a bone substitute for open wedge high tibial osteotomy. J Mater Sci Mater Med. 2014;25:2541–7. doi:10.1007/s10856-014-5266-5.

    Article  Google Scholar 

  56. Minami M, Takechi M, Ohta K, Ohta A, Ninomiya Y, Takamoto M, Fukui A, Tada M, Kamata N. Bone formation and osseointegration with titanium implant using granular- and block-type porous hydroxyapatite ceramics (IP-CHA). Dent Mater J. 2013;32(5):753–60.

    Article  Google Scholar 

  57. Fu K, Xu Q, Czernuszka J, Triffitt JT, Xia Z. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation. Biomed Mater. 2013;8(6):065007. doi:10.1088/1748-6041/8/6/065007.

    Article  Google Scholar 

  58. Kim BS, Kang HJ, Yang SS, Lee J. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute. Biomed Mater. 2014;9(2):025004. doi:10.1088/1748-6041/9/2/025004.

    Article  Google Scholar 

  59. Iundusi R, Gasbarra E, D’Arienzo M, Piccioli A, Tarantino U. Augmentation of tibial plateau fractures with an injectable bone substitute: CERAMENTTM. Three-year follow-up from a prospective study. BMC Musculoskelet Disord. 2015;16:115.

    Article  Google Scholar 

  60. Borkowski L, Pawłowska M, Radzki RP, Bieńko M, Polkowska I, Belcarz A, Karpiński M, Słowik T, Matuszewski Ł, Ślósarczyk A, Ginalska G. Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits. Mater Sci Eng C Mater Biol Appl. 2015;53:60–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feza Korkusuz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kankilic, B., Dede, E.C., Korkusuz, P., Timuçin, M., Korkusuz, F. (2017). Apatites for Orthopedic Applications. In: Kaur, G. (eds) Clinical Applications of Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-56059-5_3

Download citation

Publish with us

Policies and ethics