Skip to main content

Development and In Vitro Analysis of a New Biodegradable PLA/Hydroxyapatite (HAp) Composite for Biomedical Applications

  • Chapter
  • First Online:
  • 1055 Accesses

Abstract

The development of new drugs or formulations for the treatments of different musculoskeletal disorders (MSDs) has now being a focus of pharmaceutical and scientific societies. Targeted and multidelivery of drug and key minerals to support bone repair and regeneration at the defect site, from flexible biodegradable devices at the rate within the therapeutic window, seem to be an effective strategy. However, the drug delivery vehicles available are neither flexible and degradable nor able to deliver both pharmaceutical drug and minerals effectively. The use of biodegradable polymer and bioceramic for composite development with enough flexibility and potential for slow in situ drug delivery for biomedical applications could be one of the real options to mitigate MSDs problem. In vitro analysis of the developed devices is a vital step towards clinical trial and commercialization of the implant. Different approach and results have been compared to draw guidelines for the development and testing of thin film composite applications as a slow drug delivery vehicle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li C, Zheng Y, Wang X, et al. J Cell Physiol. 2012;227:2805.

    Article  Google Scholar 

  2. Macha IJ, Cazalbou S, Ben-Nissan B, Harvey KL, Milthorpe B. Mar Drugs. 2015;13:666. doi:10.3390/md13010666.

    Article  Google Scholar 

  3. Macha IJ, Cazalbou S, Shimmon R, Ben-Nissan B, Milthorpe B. Development and dissolution studies of bisphosphonate (clodronate) containing hydroxyapatite/PLA biocomposites for slow drug delivery. J Tissue Eng Regen Med. 2015. doi: 10.1002/term.2066. [Epub ahead of print].

    Google Scholar 

  4. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74(7):1487–510.

    Google Scholar 

  5. Suchanek W, Yoshimura M. J Mater Res. 1998;13:94. doi:10.1557/JMR.1998.0015.

    Article  Google Scholar 

  6. Chai CS, Ben-Nissan B. J Mater Sci Mater Med. 1999;10:465.

    Article  Google Scholar 

  7. Choi AH, Ben-Nissan B. Nanomedicine. 2007;2:51. doi:10.2217/17435889.2.1.51.

    Article  Google Scholar 

  8. Macha IJ, Ben-Nissan B, Milthorpe B. Curr Nanosci. 2014;10:200.

    Article  Google Scholar 

  9. Drumright RE, Gruber PR, Henton DE. Adv Mater. 2000;12:1841. doi:10.1002/1521-4095(200012)12:23<1841::aid-adma1841>3.0.co;2-e.

    Article  Google Scholar 

  10. Liu P, Ouyang Y, Xiao R. International forum on biomedical textile materials, proceedings: 298. 2010.

    Google Scholar 

  11. Södergård A, Stolt M. Prog Polym Sci. 2002;27:1123. doi:10.1016/s0079-6700(02)00012-6.

    Article  Google Scholar 

  12. De Santis P, Kovacs AJ. Biopolymers. 1968;6:299. doi:10.1002/bip.1968.360060305.

    Article  Google Scholar 

  13. Gupta AP, Kumar V. Eur Polym J. 2007;43:4053. doi:10.1016/j.eurpolymj.2007.06.045.

    Article  Google Scholar 

  14. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM. Biotechnol Adv. 2012;30:321. doi:10.1016/j.biotechadv.2011.06.019.

    Article  Google Scholar 

  15. Peltola T, Jokinen M, Veittola S, Simola J, Yli-Urpo A. J Biomed Mater Res. 2001;54:579.

    Article  Google Scholar 

  16. LeGeros RZ. Chem Rev. 2008;108:4742. doi:10.1021/cr800427g.

    Article  Google Scholar 

  17. LeGeros RZ. Clin Orthop Relat Res. 2002:81.

    Google Scholar 

  18. LeGeros RZ. Calcium phosphate materials in restorative dentistry: a review. Adv Dent Res. 1988;2(1):164–80.

    Google Scholar 

  19. Best SM, Porter AE, Thian ES, Huang J. J Eur Ceram Soc. 2008;28:1319. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.12.001

    Article  Google Scholar 

  20. Ben-Nissan B. Curr Opin Solid State Mater Sci. 2003;7:283.

    Article  Google Scholar 

  21. Macha IJ, Ozyegin LS, Chou J, Samur R, Oktar FN, Ben-Nissan B. J Aust Ceram Soc. 2013;49:122.

    Google Scholar 

  22. Macha IJ, Ozyegin LS, Oktar FN, Ben-Nissan B. J Aust Ceram Soc. 2015;51

    Google Scholar 

  23. Oktar F, Tuyel U, Demirkol N, et al. Artificial organs conference, FYROM, 2010 International Journal of Artificial Organs, (Special Issue). 2010.

    Google Scholar 

  24. Green DW, Ben-Nissan B. Biomimetic applications in regenerative medicine: scaffolds, transplantation modules, tissue homing device and stem cells. In: Tochilin V, Amiji M, editors. Handbook of materials for nanomedicine. Singapore: Pan Stanford Publishing Pte Ltd; 2010. p. 821–50.

    Google Scholar 

  25. Ben-Nissan B, Milev A, Vago R. Biomaterials. 2004;25:4971. doi:10.1016/j.biomaterials.2004.02.006.

    Article  Google Scholar 

  26. Ben-Nissan B. MRS Bull. 2004;29:28.

    Article  Google Scholar 

  27. Kuhne JH, Bartl R, Frisch B, Hammer C, Jansson V, Zimmer M. Acta Orthop Scand. 1994:65.

    Google Scholar 

  28. Heness G, Ben-Nissan B. Mater Forum. 2004;27:104.

    Google Scholar 

  29. Macha IJ, Boonyang U, Cazalbou S, et al. J Aust Ceram Soc. 2015;51:149.

    Google Scholar 

  30. Chou J, Valenzuela S, Green DW, et al. Nanomedicine. 2014;9:1131. doi:10.2217/nnm.13.116.

    Article  Google Scholar 

  31. Zhu M, Wang H, Liu J, et al. Biomaterials. 2011;32:1986. doi:10.1016/j.biomaterials.2010.11.025.

    Article  Google Scholar 

  32. Ginebra M-P, Canal C, Espanol M, Pastorino D, Montufar EB. Adv Drug Deliv Rev. 2012;64:1090. doi:10.1016/j.addr.2012.01.008.

    Article  Google Scholar 

  33. Batycky RP, Hanes J, Langer R, Edwards DA. J Pharm Sci. 1997;86:1464. doi:10.1021/js9604117.

    Article  Google Scholar 

  34. Pascaud P, Bareille R, Bourget C, Amedee J, Rey C, Sarda S. Biomed Mater. 2012;7:054108. doi:10.1088/1748-6041/7/5/054108.

    Article  Google Scholar 

  35. Palacio ML, Bhushan B. Philos Trans Ser A Math Phys Eng Sci. 2012;370:2321. doi:10.1098/rsta.2011.0483.

    Article  Google Scholar 

  36. Noh H, Vogler EA. Biomaterials. 2007;28:405. http://dx.doi.org/10.1016/j.biomaterials.2006.09.006

    Article  Google Scholar 

  37. Garcia AJ, Keselowsky BG. Critical reviews in eukaryotic. Gene Exp. 2002;12:151.

    Google Scholar 

  38. Keselowsky BG, Collard DM, Garcia AJ. J Biomed Mater Res B. 2003;66:247. doi:10.1002/jbm.a.10537.

    Article  Google Scholar 

  39. Alvarez-Barreto JF, Landy B, VanGordon S, Place L, DeAngelis PL, Sikavitsas VI. J Tissue Eng Regen Med. 2011;5:464. doi:10.1002/term.338.

    Article  Google Scholar 

  40. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biomaterials. 2012;33:5967. http://dx.doi.org/10.1016/j.biomaterials.2012.05.031

    Article  Google Scholar 

  41. Klevens RM, Edwards JR, Richards Jr CL, et al. Public Health Rep (Washington, DC: 1974). 2007;122:160.

    Article  Google Scholar 

  42. Tacconelli E, Smith G, Hieke K, Lafuma A, Bastide P. J Hosp Infect. 2009;72:97. http://dx.doi.org/10.1016/j.jhin.2008.12.012

    Article  Google Scholar 

  43. Vert M, Doi Y, Hellwich K-H, et al. Pure Appl Chem. 2012;84:34.

    Article  Google Scholar 

  44. Stewart PS. Int J Med Microbiol. 2002;292:107. http://dx.doi.org/10.1078/1438-4221-00196

    Article  Google Scholar 

  45. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Int J Antimicrob Agents. 2010;35:322. doi:10.1016/j.ijantimicag.2009.12.011.

    Article  Google Scholar 

  46. Marshall BC, Hazl L. Cystic fibrosis patient registry annual data report. Bethesda: Cystic Fibrosis Foundation. 2011.

    Google Scholar 

  47. von Eiff C, Jansen B, Kohnen W, Becker K. Drugs. 2005;65:179.

    Article  Google Scholar 

  48. Heydorn A, Nielsen AT, Hentzer M, et al. Microbiology. 2000;146(Pt 10):2395.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besim Ben-Nissan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Macha, I.J., Ben-Nissan, B., Choi, A., Cazalbou, S. (2017). Development and In Vitro Analysis of a New Biodegradable PLA/Hydroxyapatite (HAp) Composite for Biomedical Applications. In: Kaur, G. (eds) Clinical Applications of Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-56059-5_13

Download citation

Publish with us

Policies and ethics