Skip to main content

Bioactive Glass-Based Composites for Cranioplasty Implants

  • Chapter
  • First Online:
  • 1057 Accesses

Abstract

Craniectomy is a very frequently used procedure in modern neurosurgical practice required secondary to a traumatic skull bone fracture, tumour extraction or severe infection. The craniofacial region is a complex zone, comprising bone, cartilage, soft tissue, nerves and blood vessels. The bones provide the support and protection for other elements, and hence their reconstruction is of a great importance to restore normal functionalities. The aim of this chapter is to summarise the advancement in the field of bioactive glass composites for the use as a craniofacial implant and their studies in surgical challenges. Our discussion broadly covers innovations in material development part and fine-tuning of the composites with structural and functional improvisations to draw the attention of scientists and researchers by summarising recent advancement of craniofacial implants based on composites of bioactive glass and their studies in craniofacial surgical challenges along with their aftermath. With the vast versatility of bioactive glass composite materials, current innovations in implant material development together with structural and functional modifications are waiting to be explored more and more. First, we have discussed the history and evolution of cranioplasty and its requirements in craniofacial surgery including origin, shape and size of the defect and mechanical properties of cranial bone. Subsequently, different craniofacial implant materials starting from bioactive glass, its composite with polymers, ceramics and other materials have been discussed. Finally, the future aspects have been briefly outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Piitulainen JM, Kauko T, Aitasalo KMJ, Vuorinen V, Vallittu PK, Posti JP. Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg. 2015;83:708–14.

    Article  Google Scholar 

  2. Petrovic V, Zivkovic P, Petrovic D, Stefanovic V. Craniofacial bone tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:1–9.

    Article  Google Scholar 

  3. Honeybul S, Ho KM. Long-term complications of decompressive craniectomy for head injury. J Neurotrauma. 2011;28:929–35.

    Article  Google Scholar 

  4. Joseph V, Reilly P. Syndrome of the trephined: case report. J Neurosurg. 2009;111:650–2.

    Article  Google Scholar 

  5. Coelho F, Oliveira AM, Paiva WS, Freire FR, Calado VT, Amorim RL, Neville IS, de Andrade AF, Bor-Seng-Shu E, Anghinah R. Comprehensive cognitive and cerebral hemodynamic evaluation after cranioplasty. Neuropsychiatr Dis Treat. 2014;10:695.

    Google Scholar 

  6. Honeybul S, Janzen C, Kruger K, Ho KM. The impact of cranioplasty on neurological function. Br J Neurosurg. 2013;27:636–41.

    Article  Google Scholar 

  7. De Bonis P, Frassanito P, Mangiola A, Nucci CG, Anile C, Pompucci A. Cranial repair: how complicated is filling a “hole”? J Neurotrauma. 2012;29:1071–6.

    Article  Google Scholar 

  8. Shah AM, Jung H, Skirboll S. Materials used in cranioplasty: a history and analysis. Neurosurg Focus. 2014;36:E19.

    Article  Google Scholar 

  9. Aydin S, Kucukyuruk B, Abuzayed B, Aydin S, Sanus GZ. Cranioplasty: review of materials and techniques. J Neurosci Rural Pract. 2011;2:162–7.

    Article  Google Scholar 

  10. Motherway JA, Verschueren P, Van der Perre G, Vander Sloten J, Gilchrist MD. The mechanical properties of cranial bone: the effect of loading rate and cranial sampling position. J Biomech. 2009;42:2129–35.

    Article  Google Scholar 

  11. Tyagi S. Glasses and glass ceramics as biomaterials. Patiala: Thapar University; 2007.

    Google Scholar 

  12. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  Google Scholar 

  13. Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19:1419–23.

    Article  Google Scholar 

  14. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7.

    Article  Google Scholar 

  15. Courville CB. Cranioplasty in prehistoric times. Bull Los Angel Neurol Soc. 1959;24:1–8.

    Google Scholar 

  16. Kennedy KAR. Primitive surgery: skills before science. Spencer L. Rogers. Am Anthropol. 1987;89:217–8.

    Article  Google Scholar 

  17. Sanan A, Haines SJ. Repairing holes in the head: a history of cranioplasty. Neurosurgery. 1997;40:588–603.

    Google Scholar 

  18. Bowers CA, Riva-Cambrin J, Hertzler DA, Walker ML. Risk factors and rates of bone flap resorption in pediatric patients after decompressive craniectomy for traumatic brain injury: clinical article. J Neurosurg Pediatr. 2013;11:526–32.

    Article  Google Scholar 

  19. Stieglitz LH, Fung C, Murek M, Fichtner J, Raabe A, Beck J. What happens to the bone flap? Long-term outcome after reimplantation of cryoconserved bone flaps in a consecutive series of 92 patients. Acta Neurochir. 2015;157:275–80.

    Article  Google Scholar 

  20. Durand J-L, Renier D, Marchac D. The history of cranioplasty. Ann Chir Plast Esthet. 1997;42:75–83.

    Google Scholar 

  21. Matsuno A, Tanaka H, Iwamuro H, Takanashi S, Miyawaki S, Nakashima M, Nakaguchi H, Nagashima T. Analyses of the factors influencing bone graft infection after delayed cranioplasty. Acta Neurochir. 2006;148:535–40.

    Article  Google Scholar 

  22. Flanigan P, Kshettry VR, Benzel EC. World War II, tantalum, and the evolution of modern cranioplasty technique. Neurosurg Focus. 2014;36:E22.

    Article  Google Scholar 

  23. Blake GB, MacFarlane MR, Hinton JW. Titanium in reconstructive surgery of the skull and face. Br J Plast Surg. 1990;43:528–35.

    Article  Google Scholar 

  24. Goldstein JA, Paliga JT, Bartlett SP. Cranioplasty: indications and advances. Curr Opin Otolaryngol Head Neck Surg. 2013;21:400–9.

    Article  Google Scholar 

  25. Hill CS, Luoma AMV, Wilson SR, Kitchen N. Titanium cranioplasty and the prediction of complications. Br J Neurosurg. 2012;26:832–7.

    Article  Google Scholar 

  26. Marchac D, Greensmith A. Long-term experience with methylmethacrylate cranioplasty in craniofacial surgery. J Plast Reconstr Aesthet Surg. 2008;61:744–52.

    Article  Google Scholar 

  27. Alexander Jr E, Dillard PH. The use of pure polyethylene plate for cranioplasty. J Neurosurg. 1950;7:492–8.

    Article  Google Scholar 

  28. Klawitter JJ, Bagwell JG, Weinstein AM, Sauer BW, Pruitt JR. An evaluation of bone growth into porous high density polyethylene. J Biomed Mater Res. 1976;10:311–23.

    Article  Google Scholar 

  29. Wang J-C, Wei L, Xu J, Liu J-F, Gui L. Clinical outcome of cranioplasty with high-density porous polyethylene. J Craniofac Surg. 2012;23:1404–6.

    Article  Google Scholar 

  30. Hurel SJ, Thompson CJ, Watson MJ, Harris MM, Baylis PH, Kendall-Taylor P. The short synacthen and insulin stress tests in the assessment of the hypothalamic–pituitary–adrenal axis. Clin Endocrinol. 1996;44:141–6.

    Article  Google Scholar 

  31. Chacón-Moya E, Gallegos-Hernández JF, Piña-Cabrales S, Cohn-Zurita F, Goné-Fernández A. Cranial vault reconstruction using computer-designed polyetheretherketone (PEEK) implant: case report. Cir Cir. 2009;77:437–40.

    Google Scholar 

  32. Lethaus B, Safi Y, ter Laak-Poort M, Kloss-Brandstätter A, Banki F, Robbenmenke C, Steinseifer U, Kessler P. Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. J Neurotrauma. 2012;29:1077–83.

    Article  Google Scholar 

  33. Uygur S, Eryilmaz T, Cukurluoglu O, Ozmen S, Yavuzer R. Management of cranial bone defects: a reconstructive algorithm according to defect size. J Craniofac Surg. 2013;24:1606–9.

    Article  Google Scholar 

  34. DeLuca L, Raszewski R, Tresser N, Guyuron B. The fate of preserved autogenous bone graft. Plast Reconstr Surg. 1997;99:1324–8.

    Article  Google Scholar 

  35. Rogers GF, Greene AK. Autogenous bone graft: basic science and clinical implications. J Craniofac Surg. 2012;23:323–7.

    Article  Google Scholar 

  36. Hardy WN, Foster CD, Mason MJ, Yang KH, King AI, Tashman S. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 2001;45:337–68.

    Google Scholar 

  37. Miller K, Chinzei K. Constitutive modelling of brain tissue: experiment and theory. J Biomech. 1997;30:1115–21.

    Article  Google Scholar 

  38. Prange MT, Margulies SS. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J Biomech Eng. 2002;124:244–52.

    Article  Google Scholar 

  39. Gefen A, Margulies SS. Are in vivo and in situ brain tissues mechanically similar? J Biomech. 2004;37:1339–52.

    Article  Google Scholar 

  40. McPherson GK, Kriewall TJ. The elastic modulus of fetal cranial bone: a first step towards an understanding of the biomechanics of fetal head molding. J Biomech. 1980;13:9–16.

    Article  Google Scholar 

  41. Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res. 1980;150:263–70.

    Google Scholar 

  42. Hench LL, Andersson O. Bioactive glasses. Adv Ser Ceram. 1993;1:41–62.

    Google Scholar 

  43. Stoor P, Grênman R. Bioactive glass and turbinate flaps in the repair of nasal septal perforations. Ann Otol Rhinol Laryngol. 2004;113:655–61.

    Article  Google Scholar 

  44. Zhang D, Munukka E, Leppäranta O, Hupa L, Ylänen HO, Salonen JI, Eerola E, Viljanen MK, Hupa M. Comparison of antibacterial effect of three bioactive glasses. Key Eng Mater. 2006;309–311:345–8. Trans Tech Publication

    Article  Google Scholar 

  45. Zhang D, Munukka E, Hupa L, Ylänen HO, Viljanen MK, Hupa M. Factors controlling antibacterial properties of bioactive glasses. Key Eng Mater. 2007;330-332:173–6. Trans Tech Publication

    Article  Google Scholar 

  46. Munukka E, Leppäranta O, Korkeamäki M, Vaahtio M, Peltola T, Zhang D, Hupa L, Ylänen H, Salonen JI, Viljanen MK. Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med. 2008;19:27–32.

    Article  Google Scholar 

  47. Leppäranta O, Vaahtio M, Peltola T, Zhang D, Hupa L, Hupa M, Ylänen H, Salonen JI, Viljanen MK, Eerola E. Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci Mater Med. 2008;19:547–51.

    Article  Google Scholar 

  48. Mengel R, Schreiber D, Flores-de-Jacoby L. Bioabsorbable membrane and bioactive glass in the treatment of intrabony defects in patients with generalized aggressive periodontitis: results of a 5-year clinical and radiological study. J Periodontol. 2006;77:1781–7.

    Article  Google Scholar 

  49. Sculean A, Pietruska M, Schwarz F, Willershausen B, Arweiler NB, Auschill TM. Healing of human intrabony defects following regenerative periodontal therapy with an enamel matrix protein derivative alone or combined with a bioactive glass. J Clin Periodontol. 2005;32:111–7.

    Article  Google Scholar 

  50. Tai BJ, Bian Z, Jiang H, Greenspan DC, Zhong J, Clark AE, Du MQ. Anti-gingivitis effect of a dentifrice containing bioactive glass (NovaMin®) particulate. J Clin Periodontol. 2006;33:86–91.

    Article  Google Scholar 

  51. Peltola M, Aitasalo K, Suonpää J, Varpula M, Yli-Urpo A. Bioactive glass S53P4 in frontal sinus obliteration: a long-term clinical experience. Head Neck. 2006;28:834–41.

    Article  Google Scholar 

  52. Aitasalo K, Kinnunen I, Palmgren J, Varpula M. Repair of orbital floor fractures with bioactive glass implants. J Oral Maxillofac Surg. 2001;59:1390–5.

    Article  Google Scholar 

  53. Della Santina CC, Lee SC. Ceravital reconstruction of canal wall down mastoidectomy: long-term results. Arch Otolaryngol Head Neck Surg. 2006;132:617–23.

    Article  Google Scholar 

  54. Reck R, Störkel S, Meyer A. Bioactive glass-ceramics in middle ear surgery an 8-year review. Ann N Y Acad Sci. 1988;523:100–6.

    Article  Google Scholar 

  55. Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J. Hydroxyapatite reinforced polyethylene-a mechanically compatible implant material for bone replacement. Biomaterials. 1981;2:185–6.

    Article  Google Scholar 

  56. Cannillo V, Chiellini F, Fabbri P, Sola A. Production of Bioglass® 45S5–Polycaprolactone composite scaffolds via salt-leaching. Compos Struct. 2010;92:1823–32.

    Article  Google Scholar 

  57. Ahmed I, Cronin PS, Abou Neel EA, Parsons AJ, Knowles JC, Rudd CD. Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite. J Biomed Mater Res B Appl Biomater. 2009;89:18–27.

    Article  Google Scholar 

  58. Bonfield W. Design of bioactive ceramic-polymer composites. Adv Ser Ceram. 1993;1:299–304.

    Google Scholar 

  59. Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med. 2008;40:268–80.

    Article  Google Scholar 

  60. Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010;35:403–40.

    Article  Google Scholar 

  61. Niemelä T, Niiranen H, Kellomäki M, Törmälä P. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: initial mechanical properties and bioactivity. Acta Biomater. 2005;1:235–42.

    Article  Google Scholar 

  62. Tuusa SMR, Peltola MJ, Tirri T, Lassila LVJ, Vallittu PK. Frontal bone defect repair with experimental glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater. 2007;82:149–55.

    Article  Google Scholar 

  63. Kessler S, Lee S. Use of bioactive glass in dental filling material, Google Patents. 2006.

    Google Scholar 

  64. Ballo AM, Lassila LV, Vallittu PK, Närhi TO. Load bearing capacity of bone anchored fiber-reinforced composite device. J Mater Sci Mater Med. 2007;18:2025–31.

    Article  Google Scholar 

  65. Ehrlich H, Janussen D, Simon P, Bazhenov VV, Shapkin NP, Erler C, Mertig M, Born R, Heinemann S, Hanke T. Nanostructural organization of naturally occurring composites-part II: silica-chitin-based biocomposites. J Nanomater. 2008;2008:54.

    Google Scholar 

  66. Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR. Comparison of nanoscale and microscale bioactive glass on the properties of P (3HB)/Bioglass® composites. Biomaterials. 2008;29:1750–61.

    Article  Google Scholar 

  67. Hautamäki M, Meretoja VV, Mattila RH, Aho AJ, Vallittu PK. Osteoblast response to polymethyl methacrylate bioactive glass composite. J Mater Sci Mater Med. 2010;21:1685–92.

    Article  Google Scholar 

  68. Tuusa SMR, Peltola MJ, Tirri T, Puska MA, Röyttä M, Aho H, Sandholm J, Lassila LV, Vallittu PK. Reconstruction of critical size calvarial bone defects in rabbits with glass–fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater. 2008;84:510–9.

    Article  Google Scholar 

  69. Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R. Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J. 2010;158:353–61.

    Article  Google Scholar 

  70. Peltola MJ, Vallittu PK, Vuorinen V, Aho AAJ, Puntala A, Aitasalo KMJ. Novel composite implant in craniofacial bone reconstruction. Eur Arch Otorhinolaryngol. 2012;269:623–8.

    Article  Google Scholar 

  71. Srinivasan S, Jayasree R, Chennazhi KP, Nair SV, Jayakumar R. Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym. 2012;87:274–83.

    Article  Google Scholar 

  72. Aitasalo K, Rekola J, Piitulainen J, Vallittu PK. Craniofacial bone reconstruction with a novel bioactive composite implant. J Neurol Surg Part B: Skull Base. 2012;73:A099.

    Google Scholar 

  73. Aitasalo KMJ, Piitulainen JM, Rekola J, Vallittu PK. Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant. Head Neck. 2014;36:722–8.

    Article  Google Scholar 

  74. Posti JP, Piitulainen JM, Hupa L, Fagerlund S, Frantzén J, Aitasalo KMJ, Vuorinen V, Serlo W, Syrjänen S, Vallittu PK. A glass fiber-reinforced composite–bioactive glass cranioplasty implant: a case study of an early development stage implant removed due to a late infection. J Mech Behav Biomed Mater. 2015;55:191–200.

    Article  Google Scholar 

  75. Mota J, Yu N, Caridade SG, Luz GM, Gomes ME, Reis RL, Jansen JA, Walboomers XF, Mano JF. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater. 2012;8:4173–80.

    Article  Google Scholar 

  76. Kulkova J, Moritz N, Huhtinen H, Mattila R, Donati I, Marsich E, Paoletti S, Vallittu PK. Bioactive glass surface for fiber reinforced composite implants via surface etching by excimer laser. Med Eng Phys. 2016;38:664–70.

    Article  Google Scholar 

  77. Scherer GW, Brinker CJ. Sol-gel science: the physics and chemistry of sol-gel processing. USA: Academic Press; 1990.

    Google Scholar 

  78. Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM. Cranial bone defects: current and future strategies. Neurosurg Focus. 2010;29:E8.

    Article  Google Scholar 

  79. Duarte F, Santos JD, Afonso A. Medical applications of bonelike® in maxillofacial surgery. Mater Sci Forum. 2004;455:370–3.

    Article  Google Scholar 

  80. Sousa RC, Lobato JV, Maurício AC, Hussain NS, Botelho CM, Lopes MA, Santos JD. A clinical report of bone regeneration in maxillofacial surgery using Bonelike® synthetic bone graft. J Biomater Appl. 2007;22:373–85.

    Article  Google Scholar 

  81. Pavan Kumar G, Jaya Kumar A, Krishnanjaneya Reddy P, Nandyala SH, Lopes MA, Santos JD. Application of glass reinforced hydroxyapatite composite in the treatment of human intrabony periodontal angular defects–two case reports. Solid State Phenom. 2010;161:93–101.

    Article  Google Scholar 

  82. Lobato JV, Sooraj Hussain N, Sousa RC, Mauricio AC, S.J. D. Bone regeneration in maxillofacial surgery using novel Bonelike® synthetic bone graft – radiological and histological analysis. J Biomater Appl. 2008;22:373–85.

    Article  Google Scholar 

  83. Lobato JV, Hussain NS, Lopes MA, Lobato JM, Mauricio AC, Afonso A, Ali N, Santos JD. Clinical applications of titanium dental implants coated with glass-reinforced hydroxyapatite composite (bonelike). Int J Nanomanufacturing. 2008;2:135–48.

    Article  Google Scholar 

  84. Kumar PG, Kumar JA, Anumala N, Reddy KP, Avula H, Hussain SN. Volumetric analysis of intrabony defects in aggressive periodontitis patients following use of a novel composite alloplast: a pilot study. Quintessence Int. 2011;42:375–84.

    Google Scholar 

  85. Chatzistavrou X, Esteve D, Hatzistavrou E, Kontonasaki E, Paraskevopoulos KM, Boccaccini A. Sol–gel based fabrication of novel glass-ceramics and composites for dental applications. Mater Sci Eng C. 2010;30:730–9.

    Article  Google Scholar 

  86. Pratibha PK, Bhide A, Bhat GS. Comparison of bioactive glass-hydroxyapatite alone and in combination with autogenous bone particulate in the management of periodontal defects, international conference on biology, environment and chemistry, IACSIT, Singapore. 2011.

    Google Scholar 

  87. Bhide A, Pratibha PK, Bhat GS. Evaluation of autogenous cortical bone particulate with bioactive glass-synthetic hydroxyapatite in treatment of periodontal bone defects. Int J Biosci Biochem Bioinforma. 2012;2:36.

    Google Scholar 

  88. Al-Noaman A, Karpukhina N, Rawlinson SCF, Hill RG. Effect of FA on bioactivity of bioactive glass coating for titanium dental implant. Part I: composite powder. J Non-Cryst Solids. 2013;364:92–8.

    Article  Google Scholar 

  89. Al-Noaman A, Karpukhina N, Rawlinson SCF, Hill RG. Effect of FA addition on bioactivity of bioactive glass coating for titanium dental implant: part II—composite coating. J Non-Cryst Solids. 2013;364:99–106.

    Article  Google Scholar 

  90. Cordioli G, Mazzocco C, Schepers E, Brugnolo E, Majzoub Z. Maxillary sinus floor augmentation using bioactive glass granules and autogenous bone with simultaneous implant placement. Clin Oral Implants Res. 2001;12:270–8.

    Article  Google Scholar 

  91. Sculean A, Barbé G, Chiantella GC, Arweiler NB, Berakdar M, Brecx M. Clinical evaluation of an enamel matrix protein derivative combined with a bioactive glass for the treatment of intrabony periodontal defects in humans. J Periodontol. 2002;73:401–8.

    Article  Google Scholar 

  92. Turunen T, Peltola J, Yli-Urpo A, Happonen RP. Bioactive glass granules as a bone adjunctive material in maxillary sinus floor augmentation. Clin Oral Implants Res. 2004;15:135–41.

    Article  Google Scholar 

  93. Sculean A, Pietruska M, Arweiler NB, Auschill TM, Nemcovsky C. Four-year results of a prospective-controlled clinical study evaluating healing of intra-bony defects following treatment with an enamel matrix protein derivative alone or combined with a bioactive glass. J Clin Periodontol. 2007;34:507–13.

    Article  Google Scholar 

  94. Demir B, Şengün D, Berberoğlu A. Clinical evaluation of platelet-rich plasma and bioactive glass in the treatment of intra-bony defects. J Clin Periodontol. 2007;34:709–15.

    Article  Google Scholar 

  95. Carvalho MD, Suaid FF, Santamaria MP, Casati MZ, Nociti Jr FH, Sallum AW, Sallum EA. Platelet-rich plasma plus bioactive glass in the treatment of intra-bony defects: a study in dogs. J Appl Oral Sci. 2011;19:82–9.

    Article  Google Scholar 

  96. Sumer M, Keles GC, Cetinkaya BO, Balli U, Pamuk F, Uckan S. Autogenous cortical bone and bioactive glass grafting for treatment of intraosseous periodontal defects. Eur J Dent. 2013;7:6–14.

    Google Scholar 

  97. Sándor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ, Mannerstrom B, Patrikoski M, Seppanen R, Miettinen S. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med. 2014;3:530–40.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the Director, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India, and Council of Scientific and Industrial Research [through CSIR 12th 5 year plan programme (BIOCERAM)] for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswanath Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mahato, A., Kundu, B. (2017). Bioactive Glass-Based Composites for Cranioplasty Implants. In: Kaur, G. (eds) Clinical Applications of Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-56059-5_10

Download citation

Publish with us

Policies and ethics