Skip to main content

How Did Bioactive Glasses Revolutionize Medical Science? A Tribute to Larry Hench

  • Chapter
  • First Online:

Abstract

Biomaterials influence human lives through their versatile medical applications and very promising future. A large number of pharmaceutical firms and manufacturing companies are investing in the production, development, and commercialization of new biomaterial products. The biomaterials industry is a large contributor to the overall market for medical technology, resulting in approximately $42 billion in annual sales with an anticipated growth rate of ~15–18% over the succeeding years. The rapid growth of this large industry is a direct result of its positive influence on the quality of human life. Biomaterials have already opened a large range of medical devices for the skin, bone and dental repair, artificial arteries, limb replacements, nerve guidance tubes, mechanical heart valves, stents, and pacemakers, all of which can increase the quality and length of life for people around the globe. Bioactive glasses are excellent examples of biomaterials for clinical applications owing to their high biocompatibility, bioactivity, and flexibility in compositional design and properties. The invention of Bioglass® by Prof. Larry Hench magnificently revolutionized the medical industry. Following this breakthrough, many research groups have actively engaged in developing different bioactive glasses and implementing them for scaffold generation, tissue engineering, ophthalmology, cranioplasty implants, angiogenesis, wound healing, and cardiovascular applications. The present chapter focuses on the various applications of bioactive glasses in medicine and is dedicated to the founder of this research field, Prof. Larry Hench (Prof. Larry Hench passed away on December 16, 2015, in Florida (USA), after spending his life for biomaterials research), who carried key invaluable contributions to biomaterials science and industry. The trails set by him will always be guiding researchers in this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kaur G. Bioactive glasses: potential biomaterials for future therapy. Heidelberg: Springer; 2017.

    Book  Google Scholar 

  2. Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G. A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed Mater Res A. 2013;102:254–74.

    Article  Google Scholar 

  3. Williams DF. Definitions in biomaterials. In: Progress in biomedical engineering, 4. Amsterdam: Elsevier; 1987.

    Google Scholar 

  4. Shah R, Sinanan ACM, Knowles JC, Hunt NP, Lewis MP. Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct. Biomaterials. 2005;26:1497–505.

    Article  Google Scholar 

  5. Chen QZ, Harding SE, Ali NN, Lyon AR, Boccaccini A. Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng R-Rep. 2008;59:1–37.

    Article  Google Scholar 

  6. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–64.

    Article  Google Scholar 

  7. Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D. Review and the state of the art: sol-gel or melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res B Appl Biomater. 2016;104(6):1248–75.

    Article  Google Scholar 

  8. Arcos D, Regí MV. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010;6:2874–88.

    Article  Google Scholar 

  9. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10:S96–101.

    Article  Google Scholar 

  10. Minardi S, Corradetti B, Taraballi F, et al. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials. 2015;62:128–37.

    Article  Google Scholar 

  11. Park J. Bioceramics: properties, characterizations, and applications. New York: Springer; 2008.

    Google Scholar 

  12. Rahaman, et al. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–73.

    Article  Google Scholar 

  13. Thamaraiselvi TV, Rajeswari S. Biological evaluation of bioceramic materials – a review. Trends Biomater Artif Organs. 2004;18:9–17.

    Google Scholar 

  14. Chevalier J, Gremillard L. Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc. 2009;29:1245–55.

    Article  Google Scholar 

  15. Hench LL, West JK. The sol-gel process. Chem Rev. 1990;90:33–72.

    Article  Google Scholar 

  16. Hench LL, Wilson J. Introduction to bioceramics. Singapore: World Scientific; 1993.

    Book  Google Scholar 

  17. Hench LL, Polak JM. Third generation biomaterials. Science. 2002;295:1014–7.

    Article  Google Scholar 

  18. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1972;2:117–41.

    Google Scholar 

  19. Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19:1419–23.

    Article  Google Scholar 

  20. Ramakrishna S, Meyer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Comp Sci Tech. 2001;61:1189–224.

    Article  Google Scholar 

  21. Williams DF. Consensus and definitions in biomaterials, advances in biomaterials. Amsterdam: Elsevier Science; 1988. p. 11–6.

    Google Scholar 

  22. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  Google Scholar 

  23. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.

    Article  Google Scholar 

  24. Lu HH, El-Amin SF, Scott KD, Laurencin CT. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res. 2003;64A:465–74.

    Article  Google Scholar 

  25. Kim S-S, Ahn KM, Park MS, Lee J-H, Choi CY, Kim B-S. A poly(lactide coglycolide)/ hydroxyapatite composite scaffold with enhanced osteoconductivity. J Biomed Mater Res. 2007;80A:206–15.

    Article  Google Scholar 

  26. Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe S. Assessment of polyglycolic acid mesh and bioactive glass for soft tissue engineering scaffolds. Biomaterials. 2004;25:5857–66.

    Article  Google Scholar 

  27. Griffith LG. Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann N Y Acad Sci. 2002;961:83–95.

    Article  Google Scholar 

  28. Chen QZ, Rezwan K, Armitage D, Nazhat SN, Boccaccini AR. The surface functionalization of 45S5 bioglass®-based glass-ceramic scaffolds and its impact on bioactivity. J Mater Sci-Mater Med. 2006;17(11):979–87.

    Article  Google Scholar 

  29. Boccaccini AR, Blaker JJ, Maquet V, Day RM, Jéróme R. Preparation and characterisation of poly(lactide-co-grycolide) (PLGA) and PLGA/bioglass W composite tubular foam scaffolds for tissue engineering applications. Mater Sci Eng C. 2005;25:23–31.

    Article  Google Scholar 

  30. Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

    Article  Google Scholar 

  31. Sepulveda P, Jones JR, Hench LL. Bioactive sol-gel foams for tissue repair. J Biomed Research A. 2002;49:340–8.

    Article  Google Scholar 

  32. Chen QZ, Liang SL, Wang J, Simon GP. Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications. J Mech Behav Biomed Mater. 2011;4:1805–18.

    Article  Google Scholar 

  33. Kaur G, Pickrell G, Kimsawatde G, Allbee H, Sriranganathan N. Synthesis, cytotoxicity, and hydroxypatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep. 2014; doi:10.1038/srep0439.

    Google Scholar 

  34. Kaur G, Sharma P, Kumar V, Singh K. Assesment of in-vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: an optico-analytical approach. Mater Sci Eng C. 2012;32(7):1941–7.

    Article  Google Scholar 

  35. Levenberg S, Langer R. Advances in tissue engineering. Curr Top Dev Biol. 2004;61:113–34.

    Article  Google Scholar 

  36. Huang R, Pan J, Boccaccini AR, Chen QZ. A two-scale model for simultaneous sintering and crystallization of glass-ceramic scaffolds for tissue engineering. Acta Biomater. 2008;4:1095–103.

    Article  Google Scholar 

  37. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  Google Scholar 

  38. Keshaw H, Forbes A, Day RM. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials. 2005;26:4171–9.

    Article  Google Scholar 

  39. Gatti AM, Valdre G, Andersson OH. Analysis of the in vivo reactions of a bioactive glass in soft and hard tissue. Biomaterials. 1994;15:208–12.

    Article  Google Scholar 

  40. Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci. 2012;37:237–80.

    Article  Google Scholar 

  41. Zhang Q, Lin D, Yao S. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydr Polym. 2015;132:311–22.

    Article  Google Scholar 

  42. Nettles DL, Chilkoti A, Setton LA. Applications of elastin-like polypeptides in tissue engineering. Adv Drug Deliv Rev. 2010;62:1479–85.

    Article  Google Scholar 

  43. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater. 2003;5:1–16.

    Article  Google Scholar 

  44. Joseph DB. Biomedical engineering fundamentals. 3rd ed. Boca Raton: CRC press; 2006.

    Google Scholar 

  45. Gijpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17:103–4.

    Article  Google Scholar 

  46. Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010;35:403–40.

    Article  Google Scholar 

  47. Ochubiojol EM, Rodrigues A. Starch: from food to medicine. In: Scientific, health and social aspects of the food industry (InTech); 2012.

    Google Scholar 

  48. Agrawal CM, Athanasiou KA, Heckman JD. Biodegradable PLA/PGA polymers for tissue engineering in orthopaedica. Mater Sci Forum. 1997;250:115–28.

    Article  Google Scholar 

  49. Nelson JF, Stanford HG, Cutright DE. Evaluation and comparison of biodegradable substances as osteogenic agents. Oral Surg. 1977;43:836–43.

    Article  Google Scholar 

  50. Temenoff JS, Mikos AG. Injectable biodegradable materials for orthopaedic tissue engineering. Biomaterials. 2000;21:2405–12.

    Article  Google Scholar 

  51. Darby WJ. In: Prasad AS, Oberleas D, editors. Trace elements in human health and disease, vol. 1. New York: Academic; 1976. p. 17.

    Google Scholar 

  52. Chandra RK. Micronutrients and immune functions: an overview. Ann N Y Acad Sci. 1990;587:9–16.

    Article  Google Scholar 

  53. Soetan KO, Olaiya CO, Oyewole OE. The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci. 2010;4:200–22.

    Google Scholar 

  54. Yamaguchi M. Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med. 1998;11:119–35.

    Article  Google Scholar 

  55. Lang C, Murgia C, Leong M, Tan L-W, Perozzi G, Knight D, Ruffin R, Zalewski P. Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. Am J Phys Lung Cell Mol Phys. 2007;292:L577–84.

    Google Scholar 

  56. Cousins RJ. A role of zinc in the regulation of gene expression. Proc Nutr Soc. 1998;57:307–11.

    Article  Google Scholar 

  57. Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev. 2006;12:301–47.

    Article  Google Scholar 

  58. Kohane DS, Langer R. Polym Biomater Tissue Eng Pediatr Res. 2008;63:487–91.

    Google Scholar 

  59. B.B. Nissan, Advances in calcium phosphate biomaterials, Springer series in biomaterials science and engineering. Springer; 2014. p. 535.

    Google Scholar 

  60. Hayakawa S, Tsuru K, Iida H, Ohtsuki C, Osaka A. MAS-NMR studies of Apatite Formation on 50CaO·50SiO2 Glass in a simulated body fluid. Phys Chem Glasses. 1996;37(5):188–92.

    Google Scholar 

  61. Mandel S, Cuneyt Tas A. Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5 °C. Mater Sci Eng C. 2010;30:245–54.

    Article  Google Scholar 

  62. Ryu H-S, Youn H-J, Hong KS, Chang B-S, Lee C-K, Chung S-S. An improvement in sintering property of b-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials. 2002;23:909–14.

    Article  Google Scholar 

  63. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9:4457–86.

    Article  Google Scholar 

  64. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials. 2003;24:4609–20.

    Article  Google Scholar 

  65. JunWang Y, Lai C, Wei K, Chen X, Ding Y, Wang ZL. Investigations on the formation mechanism of hydroxyapatite synthesized by the solvothermal method. Nanotechnology. 2006;17:4405–12.

    Article  Google Scholar 

  66. Gross KA, Berndt CC, Herman H. Amorphous phase formation in plasma-sprayed hydroxyapatite coatings. J Biomed Mater Res. 1998;39:407.

    Article  Google Scholar 

  67. Ragel CV, Vallet-Regi M, Rodriguez-Lorenzo LM. Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material. Biomaterials. 2002;23:1865–72.

    Article  Google Scholar 

  68. Tardei C, Grigore F, Pasuk I, Stoleriua S. The study of Mg2+/Ca2+ substitution of β -tricalciumphosphate. J Optoelectr Adv Mater. 2006;8(2):568–71.

    Google Scholar 

  69. Schwarz K. A bound form of silicon in glycosaminoglycans and polyuronides. Proc Natl Acad Sci U S A. 1973;70:1608–12.

    Article  Google Scholar 

  70. Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001;69:121–9.

    Article  Google Scholar 

  71. Wong CT, Chen QZ, Lu WW, Leong JCY, Chan WK, Cheung KMC, Luk KDK. Ultrastructural study of mineralization of a strontium-containing hydroxyapatite (Sr-HA) cement in vivo. J Biomed Mater Res A. 2004;70A:428–35.

    Article  Google Scholar 

  72. Denrya I. Liisa T. Kuhn design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater. 2016;32:43–53.

    Article  Google Scholar 

  73. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17(Suppl 4):467–79.

    Article  Google Scholar 

  74. Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E. Sequential release of bioactive IGF-I and TGF-b1 fromPLG microsphere-based scaffolds. Biomaterials. 2008;29:1518–25.

    Article  Google Scholar 

  75. Gentile P, Bellucci D, Sola A, Matt C, Cannillo V, Ciardelli G. Composite scaffolds for controlled drug release: role of the polyurethane nanoparticles on the physical properties and cell behavior. J Mech Behav Biomed Mater. 2015;44:53–60.

    Article  Google Scholar 

  76. Larrañaga A, Diamanti E, Rubio E, Palomares T, Alonso-Varona A, Aldazabal P, Martin FJ, Sarasua JR. A study of themechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles. Mater Sci Eng C. 2014;42:451–60.

    Article  Google Scholar 

  77. Bellucci D, Sola A, Cannillo V. Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds. Mater Sci Eng C Mater Biol Appl. 2013;33:2138–51.

    Article  Google Scholar 

  78. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26:4817–27.

    Article  Google Scholar 

  79. Schwartz I, Robinson BP, Hollinger JO, Szachowicz EH, Brekke J. Calvarial bone repair with porous D,L-polylactide. Otolaryngol Head Neck Surg. 1995;112:707–13.

    Article  Google Scholar 

  80. Blaker J, Maquet V, Jérome R, Boccaccini AR, Nazhat SN. Mechanical properties of highly porous PDLLA/bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater. 2005;1:643–52.

    Article  Google Scholar 

  81. Kikuchi M, Koyama Y, Yamada T, Imamura Y, Okada T, Shirahama N, et al. Development of guided bone regeneration membrane composed of [beta]-tricalcium phosphate and poly(−lactide-coglycolide-co-caprolactone) composites. Biomaterials. 2004;25:5979–86.

    Article  Google Scholar 

  82. Ma PX. Tissue engineering. In: Kroschwitz JI, editor. Encyclopedia of polymer science and technology, vol. 12. New York: Wiley; 2004. p. 261–91.

    Google Scholar 

  83. Yagmurlu MF, Korkusuz F, Guersel I, Korkusuz P, Ors U, Hasirci V. Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: in vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J Biomed Mater Res. 1999;46:494–503.

    Article  Google Scholar 

  84. Zhang X, Wyss UP, Pichora D, Goosen MF. Biodegradable controlled antibiotic release devices for osteomyelitis: optimization of release properties. J Pharm Pharmacol. 1994;46:718–24.

    Article  Google Scholar 

  85. Zhang X, Wyss UP, Pichora D, Goosen MFA. Amechanistic study of antibiotic release from biodegradable poly (d, 1-lactide)cylinders. J Control Release. 1994;31:129–44.

    Article  Google Scholar 

  86. Kaur G, Pickrell G, Pandey OP, Singh K, Chudasama BN, Kumar V. Combined and individual doxorubicin/vancomycin drug loading, release kinetics and apatite formation for the CaO-CuO-P2O5- SiO2- B2O3 mesoporous glasses. RSC Adv. 2016;6:51046–56.

    Article  Google Scholar 

  87. Wu, Chang J. Interface Focus. 2012;2:292–306.

    Article  Google Scholar 

  88. Massaro M, Colletti CG, Noto R, Riela S, Poma P, Guernelli S, Parisi F, Milioto S, Lazzara G. Int J Pharm. 2015;478:476–85.

    Article  Google Scholar 

  89. Massaro M, Amorati R, Cavallaro G, Guernelli S, Lazzara G, Milioto S, Noto R, Poma P, Riela S. Colloids Surf B: Biointerfaces. 2016;140:505–13.

    Article  Google Scholar 

  90. Soundrapandiana C, Mahatob A, Kundu B, Datta S, Sac B, Basu D. Development and effect of different bioactive silicate glass scaffolds: in vitro evaluation for use as a bone drug delivery system. J Mech Behav Biomed Mater. 2014;40:1–12.

    Article  Google Scholar 

  91. Murphy WL, Peters MC, Kohn DH, Mooney DJ. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 2000;21(24):2521–7.

    Article  Google Scholar 

  92. Baino F, Novajra G, Miguez-Pacheco V, Boccaccini AR, Vitale-Brovarone C. Bioactive glasses: special applications outside the skeletal system. J Non-Cryst Solids. 2016;432:15–30. doi:10.1016/j.jnoncrysol.2015.02.015.

    Article  Google Scholar 

  93. Miguez-Pacheco V, Hench LL, Boccaccini AR. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 2015;13:1–15. doi:10.1016/j.actbio.2014.11.004.

    Article  Google Scholar 

  94. Rosenqvist K, Airaksinen S, Vehkamäki M, Juppo AM. Evaluating optimal combination of clodronate and bioactive glass for dental application. Int J Pharm. 2014;468:112–20.

    Article  Google Scholar 

  95. Bakry AS, Takahashi H, Otsuki M, Sadr A, Yamashita K, Tagami J. CO2 laser improves 45S5 bioglass interaction with dentin. J Dent Res. 2011;90(2):246–50.

    Article  Google Scholar 

  96. Bakry AS, Takahashid H, Otsukie M, Tagamie J. Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Operat Dent Mater. 2014;30:314–20.

    Google Scholar 

  97. Baino F, Vitale-Brovarone C. Bioceramics in ophthalmology. Acta Biomater. 2014;10:3372–97.

    Article  Google Scholar 

  98. Kinnunen I, Aitasalo K, Pollonen M, Varpula M. Reconstruction of orbital fractures using bioactive glass. J Cranio-Maxillofac Surg. 2000;28:229–34.

    Article  Google Scholar 

  99. Aitasalo K, Kinnunen I, Palmgren J, Varpula M. Repair of orbital floor fractures with bioactive glass implants. J Oral Maxillofac Surg. 2001;59:1390–6.

    Article  Google Scholar 

  100. Linnola RJ, Happonen RP, Andersson OH, Vedel EA, Yli-Urpo U, Krause U, et al. Titanium and bioactive glass-ceramic coated titanium as materials for keratoprosthesis. Exp Eye Res. 1996;63:471–8.

    Article  Google Scholar 

  101. Peltola M, Kinnunen I, Aitasalo K. Reconstruction of orbital wall defects with bioactive glass plates. J Oral Maxillofac Surg. 2008;66:639–46.

    Article  Google Scholar 

  102. Chirila TV. An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials. 2001;22:3311–7.

    Article  Google Scholar 

  103. Renghini C, Giuliani A, Mazzoni S, Brun F, Larsson E, Baino F, et al. Microstructural characterization and in vitro bioactivity of porous glass ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. J Eur Ceram Soc. 2013;33:1553–65.

    Article  Google Scholar 

  104. Tulyaganova DU, Reddy AA, Siegelс R, Ionescud E, Riedeld R, Ferreira JMF. Synthesis and in vitro bioactivity assessment of injectable bioglass-organic pastes for bone tissue repair. Ceram Int. 2015;41:9373–82.

    Article  Google Scholar 

  105. Tulyaganov DU, Agathopoulos S, Valerio P, Balamurugan A, Saranti A, Karakassides MA, Ferreira JM. Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO–MgO–SiO2–Na2O–P2O5–CaF2. J Mater Sci Mater Med. 2011;22:217–27.

    Article  Google Scholar 

  106. Tulyaganov DU, Makhkamov ME, Urazbaev A, Goel A, Ferreira JMF. Synthesis, processing and characterization of a bioactive glass composition for bone regeneration. Ceram Int. 2013;39:2519–26.

    Article  Google Scholar 

  107. Fu Q, Saiz E, Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C. 2011;31:1245–56.

    Article  Google Scholar 

  108. Bellucci D, Cannillo V, Sola A. Calcium and potassium addition to facilitate the sintering of bioactive glasses. Mater Lett. 2011;65:1825–7.

    Article  Google Scholar 

  109. Idowu B, Cama G, Deb S, DiSilvio L. In vitro osteoinductive potential of porous monetite for bone tissue engineering. J Tissue Eng. 2014;5:1–14.

    Article  Google Scholar 

  110. Thomson RC, Yaszemski MJ, Power JM, Mikos AG. Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration. Biomaterials. 1998;19:1935–43.

    Article  Google Scholar 

  111. Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérome R. Development and in vitro characterization of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglassfor tissue engineering applications. Biomaterials. 2002;23:3871–8.

    Article  Google Scholar 

  112. Gerhardt L-C, Widdows KL, Erol MM, Burch CW, Sanz-Herrera JA, Ochoa I, et al. The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials. 2011;32(17):4096–108.

    Article  Google Scholar 

  113. Wilson J, Pigott GH, Schoen FJ, Hench LL. J Biomed Mater Res. 1981;15(6):805–17.

    Article  Google Scholar 

  114. Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tiss Eng B Rev. 2010;16(2):199–207. doi:10.1089/ten.TEB.2009.0416.

    Article  Google Scholar 

  115. Li H, Chang J. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater. 2013;9(6):6981–91.

    Article  Google Scholar 

  116. Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005;11(5):768–77. doi:10.1089/ten.2005.11.768.

    Article  Google Scholar 

  117. Kent Leach J, Kaigler D, Wang Z, Krebsbach PH, Mooney DJ. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials. 2006;27(17):3249–55. doi:10.1016/j.biomaterials.2006.01.033.

    Article  Google Scholar 

  118. Murphy WL, Simmons CA, Kaigler D, Mooney DJ. Bone regeneration via a mineral substrate and induced angiogenesis. J Dent Res. 2004;83:204–10.

    Article  Google Scholar 

  119. Leu A, Leach JK. Pharm Res. 2008;25:1222.

    Article  Google Scholar 

  120. Haro Durand L, Vargas GE, Romero NM, Vera-Mesones R, Porto-López JM, Boccaccini AR, Gorustovich A. Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J Mater Chem B. 2015;3(6):1142–8. doi:10.1039/C4TB01840K.

    Article  Google Scholar 

  121. Ghosh SK, Nandi SR, Rumdu B, Datta S, De DK, Roy SR, Baseu D, Biomed J. Mater Res Part B. 2008;86B:217.

    Article  Google Scholar 

  122. Andrade AL, Andrade SP, Domingues RZ, Biomed J. Mater Res B. 2006;79B:122.

    Google Scholar 

  123. Lin Y, Brown RF, Jung SB, Day DE, Biomed J. Mater Res A. 2014;102:4491–9.

    Google Scholar 

  124. Mahmood J, Takita H, Ojima Y, Kobayshi M, Kohgo T, Kubole Y. J Biochem. 2001;129:163.

    Article  Google Scholar 

  125. Ma W, Yang X, Ma L, Wang X, Zhang L, Yang G, et al. Fabrication of bioactive glass-introduced nanofibrous membranes with multifunctions for potential wound dressing. RSC Adv. 2014;4(104):60114–22. doi:10.1039/C4RA10232K.

    Article  Google Scholar 

  126. Wray P. Cotton candy that heals. Am Ceram Sec Bull. 2011;90.4:24–31.

    Google Scholar 

  127. Cong M, Lin C, Chen X. Enhanced healing of full-thickness diabetic wounds using bioactive glass and Yunnan baiyao ointments. J Wuhan Univ Technol Mat Sci Ed. 2014;29(5):1063–70. doi:10.1007/s11595-014-1044-y.

    Article  Google Scholar 

  128. Lin C, MaO C, Jhang J, Li Y, Chen X. Healing effect of bioactive glass moment on full thickness skin wounds. Biomed Mater. 2012;7(4):045017.

    Article  Google Scholar 

  129. Yang Q, Chen S, Shi H, Xiao H, Ma Y. In vitro study of improved wound-healing effect of bioactive borate-based glass nano−/micro-fibers. Mater Sci Eng C. 2015;55:105–17. doi:10.1016/j.msec.2015.05.049.

    Article  Google Scholar 

  130. Gillette RL, Swaim SF, Sartin EA, Bradley DM, Coolman SL. Am J Vet Res. 2001;62(7):1149–53.

    Article  Google Scholar 

  131. Li H, He J, Yu H, Green CR, Chang J. Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior. Biomaterials. 2016;84:64–75. doi:10.1016/j.biomaterials.2016.01.033.

    Article  Google Scholar 

  132. Rai R, Boccaccini AR. ATP Conf Proc. 2010;1255:126–8.

    Article  Google Scholar 

  133. Zhao S, Li L, Wang H, Zhang Y, Cheng X, Zhou N, et al. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials. 2015;53:379–91. doi:10.1016/j.biomaterials.2015.02.112.

    Article  Google Scholar 

  134. Yunos DM, Bretcanu O, Boccaccini A. Polymer– bioceramic composites for tissue engineering scaffolds. J Mater Sci Mater Med. 2008;43:4433–42.

    Article  Google Scholar 

  135. Domingues ZR, Cortes ME, Gomes TA, Diniz HF, Freitas CS, Gomes JB, Faria AMC, Sinisterra RD. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials. 2004;25:327–33.

    Article  Google Scholar 

  136. Czarnobaj K. Preparation and characterization of silica xerogels as carriers for drugs. Drug Deliv. 2008;15:485–92.

    Article  Google Scholar 

  137. Merchant HA, Shoaib HM, Tazeen J, Yousuf RI. Once- daily tablet formulation and in vitro release evaluation of cefpodoxime using hydroxypropyl methylcellulose: a technical note. AAPS Pharm Sci Tech. 2006;7

    Google Scholar 

  138. Bang H-G, Kim S-J, Park S-Y. Biocompatibility and the physical properties of bio-glass ceramics in the Na2O–CaO– SiO2–P2O5 system withCaF2 and MgF2 additives. J Ceram Proc Res. 2008;9:588–90.

    Google Scholar 

  139. Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release. 2006;110:522–30.

    Article  Google Scholar 

  140. Kundu B, Soundrapandian C, Nandi SK, Mukherjee P, Dandapat N, Roy S, Datta BK, Mandal TK, Basu D, Bhattacharya RN. Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm Res. 2010;27:1659–76. Leng, Y., Xin, R.,

    Article  Google Scholar 

  141. Noble L, Gray AI, Sadiq L, Uchegbu IF. A non-covalently cross-linked chitosan based hydrogel. Int J Pharm. 1999;192:173–82.

    Article  Google Scholar 

  142. Catauro M, Raucci MG, De Gaetano F, Marotta A. Antibacterial and bioactive silver-containing Na2O_CaO_2SiO2 glass prepared by sol–gel method. J Mater Sci Mater Med. 2004;15:831–7.

    Article  Google Scholar 

  143. Ragel CV, Vallet-Regí M. In vitro bioactivity and gentamicin release from glass–polymer-antibiotic composites. J Biomed Mater Res. 2000;51:424–9.

    Article  Google Scholar 

  144. Arcos D, Ragel CV, Vallet-Regi M. Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials. 2001;22:701–8.

    Article  Google Scholar 

  145. Ladrón de Guevara S, Ragel CV, Vallet-Regí M. Bioactive glass–polymer materials for controlled release of ibuprofen. Biomaterials. 2003;24:4037–43.

    Article  Google Scholar 

  146. Arcos D, Peña J, Vallet-Regí M. Influence of a SiO2–CaO–P2O5 sol–gel on the bioactivity and controlled release of a ceramic/polymer/antibiotic mixed materials. Chem Mater. 2003;15:4132–8.

    Article  Google Scholar 

  147. Arcos D, del Real RP, Vallet-Regí M. A novel bioactive and magnetic biphasic material. Biomaterials. 2002;23:2151–8.

    Article  Google Scholar 

  148. Ruiz E, Serrano MC, Arcos D, Vallet-Regí M. Glass–glass ceramic thermoseeds for hyperthermic treatment of bone tumours. J Biomed Mater Res. 2006;79A:533–43.

    Article  Google Scholar 

  149. Serrano MC, Portoles MT, Pagani R, Sáez de Guinoa J, Ruíz-Fernández E, Arcos D, et al. In vitro positive biocompatibility evaluation of glass–glass ceramic thermoseeds for hyperthermic treatment of bone tumours. Tissue Eng. 2008;14:617–27.

    Article  Google Scholar 

  150. Ragel CV, Vallet-Regí M, Rodríguez-Lorenzo LM. Preparation and in vitro bioactivity of hydroxyapatite/solgel-glass biphasic material. Biomaterials. 2002;23:1865–72.

    Article  Google Scholar 

  151. Vallet-Regí M, Rámila A, Padilla S, Muñoz B. Bioactive glasses as accelerators of the apatites bioactivity. J Biomed Mater Res. 2003;66:580–5.

    Article  Google Scholar 

  152. Vallet-Regí M. Revisiting ceramics for medical applications. Dalton Trans. 2006;44:5211–20.

    Article  Google Scholar 

  153. Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed. 2007;46:7548–58.

    Article  Google Scholar 

  154. López-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Vallet-Regí M. Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem Mater. 2006;18:3137–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurbinder Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kaur, G., Mauro, J.C., Kumar, V., Pickrell, G., Baino, F. (2017). How Did Bioactive Glasses Revolutionize Medical Science? A Tribute to Larry Hench. In: Kaur, G. (eds) Clinical Applications of Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-56059-5_1

Download citation

Publish with us

Policies and ethics