Skip to main content

Preeclampsia: A Mirror into Future Cardiovascular and Renal Health

  • Chapter
  • First Online:
  • 1418 Accesses

Abstract

Preeclampsia is a leading cause of morbidity and mortality in pregnancy. It is defined as the development of hypertension after 20 weeks gestation accompanied by proteinuria and worsening renal function. The placenta is at the heart of the syndrome, and likely causes the cardinal symptoms through the release of antiangiogenic factors into the maternal circulation, a result of placental hypoxia caused by faulty vascular remodeling during implantation. The preeclampsia syndrome typically resolves after delivery of the placenta. However, women who suffer from preeclampsia remain at an elevated risk for cardiovascular, renal, and metabolic complications. The same antiangiogenic factors released by the placenta cause changes in these women resulting in a lasting pro-inflammatory milieu, and increased risk of these future complications. Internists, cardiologists, and nephrologists should make a thorough obstetric history part of their standard history taking practices, and treat women who have suffered from preeclampsia as ‘high-risk cardiovascular profile’ when making decisions in regard to risk factor modifying therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):1–7.

    Article  PubMed  Google Scholar 

  2. American College of O, Gynecologists, Task Force on Hypertension in P. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on hypertension in pregnancy. Obstet Gynecol. 2013;122(5):1122–31.

    Article  Google Scholar 

  3. Caritis S, Sibai B, Hauth J, Lindheimer MD, Klebanoff M, Thom E, et al. Low-dose aspirin to prevent preeclampsia in women at high risk. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med. 1998;338(11):701–5.

    Article  CAS  PubMed  Google Scholar 

  4. Khan KS, Wojdyla D, Say L, Gulmezoglu AM, Van Look PF. WHO analysis of causes of maternal death: a systematic review. Lancet. 2006;367(9516):1066–74.

    Article  PubMed  Google Scholar 

  5. Berg CJ, Callaghan WM, Syverson C, Henderson Z. Pregnancy-related mortality in the United States, 1998 to 2005. Obstet Gynecol. 2010;116(6):1302–9.

    Article  PubMed  Google Scholar 

  6. Saucedo M, Deneux-Tharaux C, Bouvier-Colle MH, French National Experts Committee on Maternal M. Ten years of confidential inquiries into maternal deaths in France, 1998–2007. Obstet Gynecol. 2013;122(4):752–60.

    Article  PubMed  Google Scholar 

  7. Karumanchi SA, Maynard SE, Stillman IE, Epstein FH, Sukhatme VP. Preeclampsia: a renal perspective. Kidney Int. 2005;67(6):2101–13.

    Article  PubMed  Google Scholar 

  8. Trupin LS, Simon LP, Eskenazi B. Change in paternity: a risk factor for preeclampsia in multiparas. Epidemiology. 1996;7(3):240–4.

    Article  CAS  PubMed  Google Scholar 

  9. Robillard PY, Hulsey TC, Alexander GR, Keenan A, de Caunes F, Papiernik E. Paternity patterns and risk of preeclampsia in the last pregnancy in multiparae. J Reprod Immunol. 1993;24(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  10. Lachmeijer AM, Dekker GA, Pals G, Aarnoudse JG, ten Kate LP, Arngrimsson R. Searching for preeclampsia genes: the current position. Eur J Obstet Gynecol Reprod Biol. 2002;105(2):94–113.

    Article  CAS  PubMed  Google Scholar 

  11. Chesley LC. History and epidemiology of preeclampsia-eclampsia. Clin Obstet Gynecol. 1984;27(4):801–20.

    Article  CAS  PubMed  Google Scholar 

  12. Myatt L, Clifton RG, Roberts JM, Spong CY, Hauth JC, Varner MW, et al. First-trimester prediction of preeclampsia in nulliparous women at low risk. Obstet Gynecol. 2012;119(6):1234–42.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lawlor DA, Morton SM, Nitsch D, Leon DA. Association between childhood and adulthood socioeconomic position and pregnancy induced hypertension: results from the Aberdeen children of the 1950s cohort study. J Epidemiol Community Health. 2005;59(1):49–55.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Palmer SK, Moore LG, Young D, Cregger B, Berman JC, Zamudio S. Altered blood pressure course during normal pregnancy and increased preeclampsia at high altitude (3100 meters) in Colorado. Am J Obstet Gynecol. 1999;180(5):1161–8.

    Article  CAS  PubMed  Google Scholar 

  15. Bainbridge SA, Sidle EH, Smith GN. Direct placental effects of cigarette smoke protect women from pre-eclampsia: the specific roles of carbon monoxide and antioxidant systems in the placenta. Med Hypotheses. 2005;64(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  16. Arngrimsson R, Hayward C, Nadaud S, Baldursdottir A, Walker JJ, Liston WA, et al. Evidence for a familial pregnancy-induced hypertension locus in the eNOS-gene region. Am J Hum Genet. 1997;61(2):354–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dizon-Townson DS, Nelson LM, Easton K, Ward K. The factor V Leiden mutation may predispose women to severe preeclampsia. Am J Obstet Gynecol. 1996;175(4 Pt 1):902–5.

    Article  CAS  PubMed  Google Scholar 

  18. Sohda S, Arinami T, Hamada H, Yamada N, Hamaguchi H, Kubo T. Methylenetetrahydrofolate reductase polymorphism and pre-eclampsia. J Med Genet. 1997;34(6):525–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ward K, Hata A, Jeunemaitre X, Helin C, Nelson L, Namikawa C, et al. A molecular variant of angiotensinogen associated with preeclampsia. Nat Genet. 1993;4(1):59–61.

    Article  CAS  PubMed  Google Scholar 

  20. Arngrimsson R, Geirsson RT, Cooke A, Connor M, Bjornsson S, Walker JJ. Renin gene restriction fragment length polymorphisms do not show linkage with preeclampsia and eclampsia. Acta Obstet Gynecol Scand. 1994;73(1):10–3.

    Article  CAS  PubMed  Google Scholar 

  21. Guo G, Wilton AN, Fu Y, Qiu H, Brennecke SP, Cooper DW. Angiotensinogen gene variation in a population case-control study of preeclampsia/eclampsia in Australians and Chinese. Electrophoresis. 1997;18(9):1646–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lachmeijer AM, Arngrimsson R, Bastiaans EJ, Pals G, ten Kate LP, de Vries JI, et al. Mutations in the gene for methylenetetrahydrofolate reductase, homocysteine levels, and vitamin status in women with a history of preeclampsia. Am J Obstet Gynecol. 2001;184(3):394–402.

    Article  CAS  PubMed  Google Scholar 

  23. Lade JA, Moses EK, Guo G, Wilton AN, Grehan M, Cooper DW, et al. The eNOS gene: a candidate for the preeclampsia susceptibility locus? Hypertens Pregnancy. 1999;18(1):81–93.

    Article  CAS  PubMed  Google Scholar 

  24. O’Shaughnessy KM, Fu B, Ferraro F, Lewis I, Downing S, Morris NH. Factor V Leiden and thermolabile methylenetetrahydrofolate reductase gene variants in an East Anglian preeclampsia cohort. Hypertension. 1999;33(6):1338–41.

    Article  PubMed  Google Scholar 

  25. Arngrimsson R, Siguroardottir S, Frigge ML, Bjarnadottir RI, Jonsson T, Stefansson H, et al. A genome-wide scan reveals a maternal susceptibility locus for pre-eclampsia on chromosome 2p13. Hum Mol Genet. 1999;8(9):1799–805.

    Article  CAS  PubMed  Google Scholar 

  26. Moses EK, Lade JA, Guo G, Wilton AN, Grehan M, Freed K, et al. A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2. Am J Hum Genet. 2000;67(6):1581–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tuohy JF, James DK. Pre-eclampsia and trisomy 13. Br J Obstet Gynaecol. 1992;99(11):891–4.

    Article  CAS  PubMed  Google Scholar 

  28. Salafia CM, Pezzullo JC, Lopez-Zeno JA, Simmens S, Minior VK, Vintzileos AM. Placental pathologic features of preterm preeclampsia. Am J Obstet Gynecol. 1995;173(4):1097–105.

    Article  CAS  PubMed  Google Scholar 

  29. Brosens IA, Robertson WB, Dixon HG. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu. 1972;1:177–91.

    CAS  PubMed  Google Scholar 

  30. Fisher SJ. Why is placentation abnormal in preeclampsia? Am J Obstet Gynecol. 2015;213(4 Suppl):S115–22.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Librach CL, Werb Z, Fitzgerald ML, Chiu K, Corwin NM, Esteves RA, et al. 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J Cell Biol. 1991;113(2):437–49.

    Article  CAS  PubMed  Google Scholar 

  32. Wewer UM, Faber M, Liotta LA, Albrechtsen R. Immunochemical and ultrastructural assessment of the nature of the pericellular basement membrane of human decidual cells. Lab Invest. 1985;53(6):624–33.

    CAS  PubMed  Google Scholar 

  33. Zhou Y, Genbacev O, Fisher SJ. The human placenta remodels the uterus by using a combination of molecules that govern vasculogenesis or leukocyte extravasation. Ann N Y Acad Sci. 2003;995:73–83.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou Y, Damsky CH, Chiu K, Roberts JM, Fisher SJ. Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. J Clin Invest. 1993;91(3):950–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest. 1997;99(9):2152–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou Y, Fisher SJ, Janatpour M, Genbacev O, Dejana E, Wheelock M, et al. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest. 1997;99(9):2139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Genbacev O, Joslin R, Damsky CH, Polliotti BM, Fisher SJ. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest. 1996;97(2):540–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McMahon K, Karumanchi SA, Stillman IE, Cummings P, Patton D, Easterling T. Does soluble fms-like tyrosine kinase-1 regulate placental invasion? Insight from the invasive placenta. Am J Obstet Gynecol. 2014;210(1):68e1–4.

    Article  CAS  Google Scholar 

  39. Lee SM, Romero R, Lee YJ, Park IS, Park CW, Yoon BH. Systemic inflammatory stimulation by microparticles derived from hypoxic trophoblast as a model for inflammatory response in preeclampsia. Am J Obstet Gynecol. 2012;207(4):337e1–8.

    Article  CAS  Google Scholar 

  40. Redman CW, Tannetta DS, Dragovic RA, Gardiner C, Southcombe JH, Collett GP, et al. Review: Does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta. 2012;33(Suppl):S48–54.

    Article  PubMed  Google Scholar 

  41. Karumanchi SARS, Taylor RN. Angiogensis and preeclampsia. In: Taylor RNRJ, Cunningham FG, editors. Chesley’s hypertensive disorders of pregnancy. 4th ed. Amsterdam: Academic Press; 2014.

    Google Scholar 

  42. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989;246(4935):1309–12.

    Article  CAS  PubMed  Google Scholar 

  43. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306–9.

    Article  CAS  PubMed  Google Scholar 

  44. Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA. 1991;88(20):9267–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Park JE, Chen HH, Winer J, Houck KA, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem. 1994;269(41):25646–54.

    CAS  PubMed  Google Scholar 

  46. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376(6535):62–6.

    Article  CAS  PubMed  Google Scholar 

  47. Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation. 2011;123(24):2856–69.

    Article  PubMed  Google Scholar 

  48. Chappell JC, Taylor SM, Ferrara N, Bautch VL. Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev Cell. 2009;17(3):377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maharaj AS, Saint-Geniez M, Maldonado AE, D’Amore PA. Vascular endothelial growth factor localization in the adult. Am J Pathol. 2006;168(2):639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003;111(5):707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Glusker P, Recht L, Lane B. Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med. 2006;354(9):980–2 (discussion –2).

    Article  CAS  PubMed  Google Scholar 

  52. Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol. 2003;21(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  53. Kuenen BC, Levi M, Meijers JC, Kakkar AK, van Hinsbergh VW, Kostense PJ, et al. Analysis of coagulation cascade and endothelial cell activation during inhibition of vascular endothelial growth factor/vascular endothelial growth factor receptor pathway in cancer patients. Arterioscler Thromb Vasc Biol. 2002;22(9):1500–5.

    Article  CAS  PubMed  Google Scholar 

  54. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349(5):427–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol. 1989;161(5):1200–4.

    Article  CAS  PubMed  Google Scholar 

  56. Rodgers GM, Taylor RN, Roberts JM. Preeclampsia is associated with a serum factor cytotoxic to human endothelial cells. Am J Obstet Gynecol. 1988;159(4):908–14.

    Article  CAS  PubMed  Google Scholar 

  57. Nova A, Sibai BM, Barton JR, Mercer BM, Mitchell MD. Maternal plasma level of endothelin is increased in preeclampsia. Am J Obstet Gynecol. 1991;165(3):724–7.

    Article  CAS  PubMed  Google Scholar 

  58. Deng L, Bremme K, Hansson LO, Blomback M. Plasma levels of von Willebrand factor and fibronectin as markers of persisting endothelial damage in preeclampsia. Obstet Gynecol. 1994;84(6):941–5.

    CAS  PubMed  Google Scholar 

  59. Stubbs TM, Lazarchick J, Horger EO III. Plasma fibronectin levels in preeclampsia: a possible biochemical marker for vascular endothelial damage. Am J Obstet Gynecol. 1984;150(7):885–7.

    Article  CAS  PubMed  Google Scholar 

  60. Taylor RN, Crombleholme WR, Friedman SA, Jones LA, Casal DC, Roberts JM. High plasma cellular fibronectin levels correlate with biochemical and clinical features of preeclampsia but cannot be attributed to hypertension alone. Am J Obstet Gynecol. 1991;165(4 Pt 1):895–901.

    Article  CAS  PubMed  Google Scholar 

  61. Thorp JM Jr, White GC II, Moake JL, Bowes WA Jr. von Willebrand factor multimeric levels and patterns in patients with severe preeclampsia. Obstet Gynecol. 1990;75(2):163–7.

    PubMed  Google Scholar 

  62. Hsu CD, Iriye B, Johnson TR, Witter FR, Hong SF, Chan DW. Elevated circulating thrombomodulin in severe preeclampsia. Am J Obstet Gynecol. 1993;169(1):148–9.

    Article  CAS  PubMed  Google Scholar 

  63. Minakami H, Takahashi T, Izumi A, Tamada T. Increased levels of plasma thrombomodulin in preeclampsia. Gynecol Obstet Invest. 1993;36(4):208–10.

    Article  CAS  PubMed  Google Scholar 

  64. Musci TJ, Roberts JM, Rodgers GM, Taylor RN. Mitogenic activity is increased in the sera of preeclamptic women before delivery. Am J Obstet Gynecol. 1988;159(6):1446–51.

    Article  CAS  PubMed  Google Scholar 

  65. Cackovic M, Buhimschi CS, Zhao G, Funai EF, Norwitz ER, Kuczynski E, et al. Fractional excretion of tumor necrosis factor-alpha in women with severe preeclampsia. Obstet Gynecol. 2008;112(1):93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Myers J, Mires G, Macleod M, Baker P. In preeclampsia, the circulating factors capable of altering in vitro endothelial function precede clinical disease. Hypertension. 2005;45(2):258–63.

    Article  CAS  PubMed  Google Scholar 

  67. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA. 1993;90(22):10705–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–9.

    Article  CAS  PubMed  Google Scholar 

  70. Chaiworapongsa T, Romero R, Espinoza J, Bujold E, Mee Kim Y, Goncalves LF, et al. Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young Investigator Award. Am J Obstet Gynecol. 2004;190(6):1541–7 (discussion 7–50).

    Article  CAS  PubMed  Google Scholar 

  71. Hertig A, Berkane N, Lefevre G, Toumi K, Marti HP, Capeau J, et al. Maternal serum sFlt1 concentration is an early and reliable predictive marker of preeclampsia. Clin Chem. 2004;50(9):1702–3.

    Article  CAS  PubMed  Google Scholar 

  72. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–83.

    Article  CAS  PubMed  Google Scholar 

  73. Levine RJ, Thadhani R, Qian C, Lam C, Lim KH, Yu KF, et al. Urinary placental growth factor and risk of preeclampsia. JAMA. 2005;293(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  74. Buhimschi CS, Norwitz ER, Funai E, Richman S, Guller S, Lockwood CJ, et al. Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia. Am J Obstet Gynecol. 2005;192(3):734–41.

    Article  CAS  PubMed  Google Scholar 

  75. Verlohren S, Galindo A, Schlembach D, Zeisler H, Herraiz I, Moertl MG, et al. An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia. Am J Obstet Gynecol. 2010;202(2):161 e1–e11.

    Article  CAS  Google Scholar 

  76. Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennstrom M, et al. Predictive value of the sFlt-1:PlGF Ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  77. Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355(10):992–1005.

    Article  CAS  PubMed  Google Scholar 

  78. Sandrim VC, Palei AC, Metzger IF, Gomes VA, Cavalli RC, Tanus-Santos JE. Nitric oxide formation is inversely related to serum levels of antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endogline in preeclampsia. Hypertension. 2008;52(2):402–7.

    Article  CAS  PubMed  Google Scholar 

  79. Erlebacher A. Mechanisms of T cell tolerance towards the allogeneic fetus. Nat Rev Immunol. 2013;13(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  80. Hiby SE, Walker JJ, O’Shaughnessy KM, Redman CW, Carrington M, Trowsdale J, et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med. 2004;200(8):957–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang SJ, Chen CP, Schatz F, Rahman M, Abrahams VM, Lockwood CJ. Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua. J Pathol. 2008;214(3):328–36.

    Article  CAS  PubMed  Google Scholar 

  82. Lockwood CJ, Matta P, Krikun G, Koopman LA, Masch R, Toti P, et al. Regulation of monocyte chemoattractant protein-1 expression by tumor necrosis factor-alpha and interleukin-1beta in first trimester human decidual cells: implications for preeclampsia. Am J Pathol. 2006;168(2):445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schobel HP, Fischer T, Heuszer K, Geiger H, Schmieder RE. Preeclampsia—a state of sympathetic overactivity. N Engl J Med. 1996;335(20):1480–5.

    Article  CAS  PubMed  Google Scholar 

  84. Manyonda IT, Slater DM, Fenske C, Hole D, Choy MY, Wilson C. A role for noradrenaline in pre-eclampsia: towards a unifying hypothesis for the pathophysiology. Br J Obstet Gynaecol. 1998;105(6):641–8.

    Article  CAS  PubMed  Google Scholar 

  85. Tapia HR, Johnson CE, Strong CG. Renin-angiotensin system in normal and in hypertensive disease of pregnancy. Lancet. 1972;2(7782):847–50.

    Article  CAS  PubMed  Google Scholar 

  86. Agatisa PK, Ness RB, Roberts JM, Costantino JP, Kuller LH, McLaughlin MK. Impairment of endothelial function in women with a history of preeclampsia: an indicator of cardiovascular risk. Am J Physiol Heart Circ Physiol. 2004;286(4):H1389–93.

    Article  CAS  PubMed  Google Scholar 

  87. Moran P, Baylis PH, Lindheimer MD, Davison JM. Glomerular ultrafiltration in normal and preeclamptic pregnancy. J Am Soc Nephrol. 2003;14(3):648–52.

    Article  PubMed  Google Scholar 

  88. Stillman IE, Karumanchi SA. The glomerular injury of preeclampsia. J Am Soc Nephrol. 2007;18(8):2281–4.

    Article  PubMed  Google Scholar 

  89. Schwartz RB, Feske SK, Polak JF, DeGirolami U, Iaia A, Beckner KM, et al. Preeclampsia-eclampsia: clinical and neuroradiographic correlates and insights into the pathogenesis of hypertensive encephalopathy. Radiology. 2000;217(2):371–6.

    Article  CAS  PubMed  Google Scholar 

  90. Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hannaford P, Ferry S, Hirsch S. Cardiovascular sequelae of toxaemia of pregnancy. Heart. 1997;77(2):154–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lykke JA, Langhoff-Roos J, Sibai BM, Funai EF, Triche EW, Paidas MJ. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension. 2009;53(6):944–51.

    Article  CAS  PubMed  Google Scholar 

  93. Magnussen EB, Vatten LJ, Smith GD, Romundstad PR. Hypertensive disorders in pregnancy and subsequently measured cardiovascular risk factors. Obstet Gynecol. 2009;114(5):961–70.

    Article  PubMed  Google Scholar 

  94. Marin R, Gorostidi M, Portal CG, Sanchez M, Sanchez E, Alvarez J. Long-term prognosis of hypertension in pregnancy. Hypertens Pregnancy. 2000;19(2):199–209.

    Article  CAS  PubMed  Google Scholar 

  95. Wang IK, Muo CH, Chang YC, Liang CC, Chang CT, Lin SY, et al. Association between hypertensive disorders during pregnancy and end-stage renal disease: a population-based study. CMAJ. 2013;185(3):207–13.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wilson BJ, Watson MS, Prescott GJ, Sunderland S, Campbell DM, Hannaford P, et al. Hypertensive diseases of pregnancy and risk of hypertension and stroke in later life: results from cohort study. BMJ. 2003;326(7394):845.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lazdam M, de la Horra A, Diesch J, Kenworthy Y, Davis E, Lewandowski AJ, et al. Unique blood pressure characteristics in mother and offspring after early onset preeclampsia. Hypertension. 2012;60(5):1338–45.

    Article  CAS  PubMed  Google Scholar 

  98. Irgens HU, Reisaeter L, Irgens LM, Lie RT. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ. 2001;323(7323):1213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kestenbaum B, Seliger SL, Easterling TR, Gillen DL, Critchlow CW, Stehman-Breen CO, et al. Cardiovascular and thromboembolic events following hypertensive pregnancy. Am J Kidney Dis. 2003;42(5):982–9.

    Article  PubMed  Google Scholar 

  100. Lin YS, Tang CH, Yang CY, Wu LS, Hung ST, Hwa HL, et al. Effect of pre-eclampsia-eclampsia on major cardiovascular events among peripartum women in Taiwan. Am J Cardiol. 2011;107(2):325–30.

    Article  PubMed  Google Scholar 

  101. Mongraw-Chaffin ML, Cirillo PM, Cohn BA. Preeclampsia and cardiovascular disease death: prospective evidence from the child health and development studies cohort. Hypertension. 2010;56(1):166–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pell JP, Smith GC, Walsh D. Pregnancy complications and subsequent maternal cerebrovascular events: a retrospective cohort study of 119,668 births. Am J Epidemiol. 2004;159(4):336–42.

    Article  PubMed  Google Scholar 

  103. Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet. 2001;357(9273):2002–6.

    Article  CAS  PubMed  Google Scholar 

  104. McDonald SD, Malinowski A, Zhou Q, Yusuf S, Devereaux PJ. Cardiovascular sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses. Am Heart J. 2008;156(5):918–30.

    Article  PubMed  Google Scholar 

  105. Vikse BE, Irgens LM, Leivestad T, Skjaerven R, Iversen BM. Preeclampsia and the risk of end-stage renal disease. N Engl J Med. 2008;359(8):800–9.

    Article  CAS  PubMed  Google Scholar 

  106. Hubel CA, Snaedal S, Ness RB, Weissfeld LA, Geirsson RT, Roberts JM, et al. Dyslipoproteinaemia in postmenopausal women with a history of eclampsia. BJOG. 2000;107(6):776–84.

    Article  CAS  PubMed  Google Scholar 

  107. Levine RJ, Vatten LJ, Horowitz GL, Qian C, Romundstad PR, Yu KF, et al. Pre-eclampsia, soluble fms-like tyrosine kinase 1, and the risk of reduced thyroid function: nested case–control and population based study. BMJ. 2009;339:b4336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Delahaije DH, Dirksen CD, Peeters LL, Smits LJ. Anxiety and depression following preeclampsia or hemolysis, elevated liver enzymes, and low platelets syndrome. A systematic review. Acta Obstet Gynecol Scand. 2013;92(7):746–61.

    Article  PubMed  CAS  Google Scholar 

  109. Bytautiene E, Bulayeva N, Bhat G, Li L, Rosenblatt KP, Saade GR. Long-term alterations in maternal plasma proteome after sFlt1-induced preeclampsia in mice. Am J Obstet Gynecol. 2013;208(5):388 e1–e10.

    Article  CAS  Google Scholar 

  110. Wolf M, Hubel CA, Lam C, Sampson M, Ecker JL, Ness RB, et al. Preeclampsia and future cardiovascular disease: potential role of altered angiogenesis and insulin resistance. J Clin Endocrinol Metab. 2004;89(12):6239–43.

    Article  CAS  PubMed  Google Scholar 

  111. Seno ATY, Matsui M, Nakada Y, Ueda T, Okuda A, Jonckx B, Nakagawa H, Onoue K, Watanabe M, Kawata H. Soluble Flt-1 deficiency plays a significant role in the exacerbation of cardiac hypertrophy and heart failure. Circulation. 2014;130(Suppl 2):A17078.

    Google Scholar 

  112. Vorovich E, French B, Ky B, Goldberg L, Fang JC, Sweitzer NK, et al. Biomarker predictors of cardiac hospitalization in chronic heart failure: a recurrent event analysis. J Card Fail. 2014;20(8):569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Taimeh Z, Loughran J, Birks EJ, Bolli R. Vascular endothelial growth factor in heart failure. Nat Rev Cardiol. 2013;10(9):519–30.

    Article  CAS  PubMed  Google Scholar 

  114. Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, et al. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation. 2002;105(3):373–9.

    Article  CAS  PubMed  Google Scholar 

  115. Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int. 2004;65(6):2003–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Blumhof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Blumhof, S., Rangaswami, J. (2017). Preeclampsia: A Mirror into Future Cardiovascular and Renal Health. In: Rangaswami, J., Lerma, E., Ronco, C. (eds) Cardio-Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-319-56042-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56042-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56040-3

  • Online ISBN: 978-3-319-56042-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics