Skip to main content

Cardiomyopathy in the Potential Kidney Transplant Candidate

  • Chapter
  • First Online:
Cardio-Nephrology
  • 1417 Accesses

Abstract

Chronic kidney disease is a risk factor for cardiovascular disease and is an independent risk factor for development of cardiomyopathy even after controlling for coronary artery disease, hypertension, and diabetes. Congestive heart failure, both systolic and diastolic, in patients with end-stage renal disease is a poor prognostic marker with over 80% of patients dying within 3 years of the diagnosis. The pathophysiology of cardiomyopathy is thought to be a complex with multiple traditional risk factors (such as volume overload, hypertension, anemia) and nontraditional risk factors (such uremic toxin, inflammation, oxidative stress) being implicated. The current treatment approach is centered on treating both, the cardiomyopathy, and chronic kidney disease using guideline directed treatment algorithms focused on treating pressure and volume overload, anemia, secondary parathyroidism, and uremia. The field of transplant in patients with both congestive heart failure and end-stage renal disease is evolving. In the absence of genetic conditions or systemic infiltrative disease, most patients with isolated diastolic congestive heart failure may be listed for kidney transplantation. The work up of patients with systolic dysfunction is controversial due to a perceived high-risk candidacy. Consensus is lacking whether these patients should be listed for single organ or double organ heart/kidney transplantation. Although a majority of systolic heart failure patients will have improvement in their ejection fraction after kidney transplantation, a subset of patients has high mortality. The survival disadvantage is driven by patients who fail to improve their ejection fraction after kidney transplantation, suggesting a need for prospective trials to identify these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhaj E, Alhaj N, Rahman I, Niazi TO, Berkowitz R, Klapholz M. Uremic cardiomyopathy: an underdiagnosed disease. Congest Heart Fail. 2013;19(4):E40–5.

    Article  PubMed  Google Scholar 

  2. Sarnak MJ, Coronado BE, Greene T, et al. Cardiovascular disease risk factors in chronic renal insufficiency. Clin Nephrol. 2002;57(5):327–35.

    Article  CAS  PubMed  Google Scholar 

  3. Johnson DW, Craven AM, Isbel NM. Modification of cardiovascular risk in hemodialysis patients: an evidence-based review. Hemodial Int. 2007;11(1):1–14.

    Article  PubMed  Google Scholar 

  4. Longenecker JC, Coresh J, Powe NR, et al. Traditional cardiovascular disease risk factors in dialysis patients compared with the general population: the CHOICE study. J Am Soc Nephrol. 2002;13(7):1918–27.

    Article  PubMed  Google Scholar 

  5. Collins AJ, Foley RN, Herzog C, et al. Excerpts from the US Renal Data System 2009 Annual Data Report. Am J Kidney Dis. 2010;55(1 Suppl 1):S1–420, A426–7.

    Google Scholar 

  6. Trespalacios FC, Taylor AJ, Agodoa LY, Bakris GL, Abbott KC. Heart failure as a cause for hospitalization in chronic dialysis patients. Am J Kidney Dis. 2003;41(6):1267–77.

    Article  PubMed  Google Scholar 

  7. Nolan CR. Strategies for improving long-term survival in patients with ESRD. J Am Soc Nephrol. 2005;16(Suppl 2):S120–7.

    Article  PubMed  Google Scholar 

  8. Foley RN, Parfrey PS, Harnett JD, et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 1995;47(1):186–92.

    Article  CAS  PubMed  Google Scholar 

  9. Silberberg JS, Barre PE, Prichard SS, Sniderman AD. Impact of left ventricular hypertrophy on survival in end-stage renal disease. Kidney Int. 1989;36(2):286–90.

    Article  CAS  PubMed  Google Scholar 

  10. Periyasamy SM, Chen J, Cooney D, et al. Effects of uremic serum on isolated cardiac myocyte calcium cycling and contractile function. Kidney Int. 2001;60(6):2367–76.

    Article  CAS  PubMed  Google Scholar 

  11. Ritz E, Rambausek M, Mall G, Ruffmann K, Mandelbaum A. Cardiac changes in uraemia and their possible relationship to cardiovascular instability on dialysis. Nephrol Dial Transplant. 1990;5(Suppl 1):93–7.

    Article  PubMed  Google Scholar 

  12. Mark PB, Johnston N, Groenning BA, et al. Redefinition of uremic cardiomyopathy by contrast-enhanced cardiac magnetic resonance imaging. Kidney Int. 2006;69(10):1839–45.

    Article  CAS  PubMed  Google Scholar 

  13. Zoccali C, Benedetto FA, Mallamaci F, et al. Prognostic impact of the indexation of left ventricular mass in patients undergoing dialysis. J Am Soc Nephrol. 2001;12(12):2768–74.

    CAS  PubMed  Google Scholar 

  14. Barberato SH, Mantilla DE, Misocami MA, et al. Effect of preload reduction by hemodialysis on left atrial volume and echocardiographic Doppler parameters in patients with end-stage renal disease. Am J Cardiol. 2004;94(9):1208–10.

    Article  PubMed  Google Scholar 

  15. Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009;10(2):165–93.

    Article  PubMed  Google Scholar 

  16. Dhingra R, Gaziano JM, Djousse L. Chronic kidney disease and the risk of heart failure in men. Circ Heart Fail. 2011;4(2):138–44.

    Article  PubMed  PubMed Central  Google Scholar 

  17. London GM. Left ventricular alterations and end-stage renal disease. Nephrol Dial Transplant. 2002;17(Suppl 1):29–36.

    Article  PubMed  Google Scholar 

  18. London GM, Marchais SJ, Safar ME, et al. Aortic and large artery compliance in end-stage renal failure. Kidney Int. 1990;37(1):137–42.

    Article  CAS  PubMed  Google Scholar 

  19. Mourad JJ, Pannier B, Blacher J, et al. Creatinine clearance, pulse wave velocity, carotid compliance and essential hypertension. Kidney Int. 2001;59(5):1834–41.

    Article  CAS  PubMed  Google Scholar 

  20. Konings CJ, Dammers R, Rensma PL, et al. Arterial wall properties in patients with renal failure. Am J Kidney Dis. 2002;39(6):1206–12.

    Article  PubMed  Google Scholar 

  21. London GM, Pannier B, Guerin AP, et al. Alterations of left ventricular hypertrophy in and survival of patients receiving hemodialysis: follow-up of an interventional study. J Am Soc Nephrol. 2001;12(12):2759–67.

    CAS  PubMed  Google Scholar 

  22. Ortega O, Gallar P, Munoz M, et al. Association between C-reactive protein levels and N-terminal pro-B-type natriuretic peptide in pre-dialysis patients. Nephron Clin Pract. 2004;97(4):c125–30.

    Article  PubMed  Google Scholar 

  23. Laviades C, Varo N, Diez J. Transforming growth factor beta in hypertensives with cardiorenal damage. Hypertension. 2000;36(4):517–22.

    Article  CAS  PubMed  Google Scholar 

  24. Vlahakos DV, Hahalis G, Vassilakos P, Marathias KP, Geroulanos S. Relationship between left ventricular hypertrophy and plasma renin activity in chronic hemodialysis patients. J Am Soc Nephrol. 1997;8(11):1764–70.

    CAS  PubMed  Google Scholar 

  25. Sato A, Funder JW, Saruta T. Involvement of aldosterone in left ventricular hypertrophy of patients with end-stage renal failure treated with hemodialysis. Am J Hypertens. 1999;12(9 Pt 1):867–73.

    Article  PubMed  Google Scholar 

  26. London GM. Cardiovascular disease in chronic renal failure: pathophysiologic aspects. Seminars Dial. 2003;16(2):85–94.

    Article  Google Scholar 

  27. Fagugli RM, Reboldi G, Quintaliani G, et al. Short daily hemodialysis: blood pressure control and left ventricular mass reduction in hypertensive hemodialysis patients. Am J Kidney Dis. 2001;38(2):371–6.

    Article  CAS  PubMed  Google Scholar 

  28. Ozkahya M, Ok E, Cirit M, et al. Regression of left ventricular hypertrophy in haemodialysis patients by ultrafiltration and reduced salt intake without antihypertensive drugs. Nephrol Dial Transplant. 1998;13(6):1489–93.

    Article  CAS  PubMed  Google Scholar 

  29. Malik J, Tuka V, Mokrejsova M, Holaj R, Tesar V. Mechanisms of chronic heart failure development in end-stage renal disease patients on chronic hemodialysis. Physiol Res. 2009;58(5):613–21.

    CAS  PubMed  Google Scholar 

  30. Iwashima Y, Horio T, Takami Y, et al. Effects of the creation of arteriovenous fistula for hemodialysis on cardiac function and natriuretic peptide levels in CRF. Am J Kidney Dis. 2002;40(5):974–82.

    Article  CAS  PubMed  Google Scholar 

  31. Ori Y, Korzets A, Katz M, Perek Y, Zahavi I, Gafter U. Haemodialysis arteriovenous access—a prospective haemodynamic evaluation. Nephrol Dial Transplant. 1996;11(1):94–7.

    CAS  PubMed  Google Scholar 

  32. Parfrey PS, Harnett JD, Barre PE. The natural history of myocardial disease in dialysis patients. J Am Soc Nephrol. 1991;2(1):2–12.

    CAS  PubMed  Google Scholar 

  33. Ma JZ, Ebben J, Xia H, Collins AJ. Hematocrit level and associated mortality in hemodialysis patients. J Am Soc Nephrol. 1999;10(3):610–9.

    CAS  PubMed  Google Scholar 

  34. London GM, Parfrey PS. Cardiac disease in chronic uremia: pathogenesis. Adv Ren Replace Ther. 1997;4(3):194–211.

    Article  CAS  PubMed  Google Scholar 

  35. Phrommintikul A, Haas SJ, Elsik M, Krum H. Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet. 2007;369(9559):381–8.

    Article  CAS  PubMed  Google Scholar 

  36. Drueke TB, Locatelli F, Clyne N, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006;355(20):2071–84.

    Article  CAS  PubMed  Google Scholar 

  37. Singh AK, Szczech L, Tang KL, et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355(20):2085–98.

    Article  CAS  PubMed  Google Scholar 

  38. Amann K, Tornig J, Kugel B, et al. Hyperphosphatemia aggravates cardiac fibrosis and microvascular disease in experimental uremia. Kidney Int. 2003;63(4):1296–301.

    Article  PubMed  Google Scholar 

  39. Achinger SG, Ayus JC. Left ventricular hypertrophy: is hyperphosphatemia among dialysis patients a risk factor? J Am Soc Nephrol. 2006;17(12 Suppl 3):S255–61.

    Article  CAS  PubMed  Google Scholar 

  40. Fujii H, Kim JI, Abe T, Umezu M, Fukagawa M. Relationship between parathyroid hormone and cardiac abnormalities in chronic dialysis patients. Intern Med. 2007;46(18):1507–12.

    Article  PubMed  Google Scholar 

  41. Silver J, Rodriguez M, Slatopolsky E. FGF23 and PTH—double agents at the heart of CKD. Nephrol Dial Transplant. 2012;27(5):1715–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chue CD, Edwards NC, Moody WE, Steeds RP, Townend JN, Ferro CJ. Serum phosphate is associated with left ventricular mass in patients with chronic kidney disease: a cardiac magnetic resonance study. Heart. 2012;98(3):219–24.

    Article  CAS  PubMed  Google Scholar 

  43. Weishaar RE, Simpson RU. Vitamin D3 and cardiovascular function in rats. J Clin Investig. 1987;79(6):1706–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cozzolino M, Ronco C. The impact of paricalcitol on left ventricular hypertrophy. Contrib Nephrol. 2011;171:161–5.

    Article  CAS  PubMed  Google Scholar 

  45. Bodyak N, Ayus JC, Achinger S, et al. Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc Natl Acad Sci USA. 2007;104(43):16810–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wolf WC, Yoshida H, Agata J, Chao L, Chao J. Human tissue kallikrein gene delivery attenuates hypertension, renal injury, and cardiac remodeling in chronic renal failure. Kidney Int. 2000;58(2):730–9.

    Article  CAS  PubMed  Google Scholar 

  47. Raev DC. Left ventricular function and specific diabetic complications in other target organs in young insulin-dependent diabetics: an echocardiographic study. Heart Vessels. 1994;9(3):121–8.

    Article  CAS  PubMed  Google Scholar 

  48. Yamazaki T, Komuro I, Kudoh S, et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem. 1996;271(6):3221–8.

    Article  CAS  PubMed  Google Scholar 

  49. Yamazaki T, Komuro I, Yazaki Y. Molecular mechanism of cardiac cellular hypertrophy by mechanical stress. J Mol Cell Cardiol. 1995;27(1):133–40.

    Article  CAS  PubMed  Google Scholar 

  50. Nielsen FS, Sato A, Ali S, et al. Beneficial impact of ramipril on left ventricular hypertrophy in normotensive nonalbuminuric NIDDM patients. Diabetes Care. 1998;21(5):804–9.

    Article  CAS  PubMed  Google Scholar 

  51. Amann K, Breitbach M, Ritz E, Mall G. Myocyte/capillary mismatch in the heart of uremic patients. J Am Soc Nephrol. 1998;9(6):1018–22.

    CAS  PubMed  Google Scholar 

  52. Kennedy DJ, Vetteth S, Periyasamy SM, et al. Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension. 2006;47(3):488–95.

    Article  CAS  PubMed  Google Scholar 

  53. Fedorova OV, Talan MI, Agalakova NI, Lakatta EG, Bagrov AY. Coordinated shifts in Na/K-ATPase isoforms and their endogenous ligands during cardiac hypertrophy and failure in NaCl-sensitive hypertension. J Hypertens. 2004;22(2):389–97.

    Article  CAS  PubMed  Google Scholar 

  54. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382(9889):339–52.

    Article  PubMed  Google Scholar 

  55. Mall G, Huther W, Schneider J, Lundin P, Ritz E. Diffuse intermyocardiocytic fibrosis in uraemic patients. Nephrol Dial Transplant. 1990;5(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  56. Aoki J, Ikari Y, Nakajima H, et al. Clinical and pathologic characteristics of dilated cardiomyopathy in hemodialysis patients. Kidney Int. 2005;67(1):333–40.

    Article  PubMed  Google Scholar 

  57. Diez J. Mechanisms of cardiac fibrosis in hypertension. J Clin Hypertens. 2007;9(7):546–50.

    Article  CAS  Google Scholar 

  58. Chinnappa S, Mooney A, Lewis NT, Goldspink D, El Nahas M, Tan LB. New evidence of cardiac dysfunction associated with renal impairment. Int J Cardiol. 2011;152(3):411–3.

    Article  PubMed  Google Scholar 

  59. Mitsnefes MM, Kimball TR, Witt SA, Glascock BJ, Khoury PR, Daniels SR. Left ventricular mass and systolic performance in pediatric patients with chronic renal failure. Circulation. 2003;107(6):864–8.

    Article  PubMed  Google Scholar 

  60. Sietsema KE, Amato A, Adler SG, Brass EP. Exercise capacity as a predictor of survival among ambulatory patients with end-stage renal disease. Kidney Int. 2004;65(2):719–24.

    Article  PubMed  Google Scholar 

  61. Weaver DJ Jr, Kimball TR, Knilans T, et al. Decreased maximal aerobic capacity in pediatric chronic kidney disease. J Am Soc Nephrol. 2008;19(3):624–30.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Reisin E. Nonpharmacologic approaches to hypertension. Weight, sodium, alcohol, exercise, and tobacco considerations. Med Clin N Am. 1997;81(6):1289–303.

    Article  CAS  PubMed  Google Scholar 

  63. Zazgornik J, Biesenbach G, Forstenlehner M, Stummvoll K. Profile of antihypertensive drugs in hypertensive patients on renal replacement therapy (RRT). Clin Nephrol. 1997;48(6):337–40.

    CAS  PubMed  Google Scholar 

  64. Dyadyk AI, Bagriy AE, Lebed IA, Yarovaya NF, Schukina EV, Taradin GG. ACE inhibitors captopril and enalapril induce regression of left ventricular hypertrophy in hypertensive patients with chronic renal failure. Nephrol Dial Transplant. 1997;12(5):945–51.

    Article  CAS  PubMed  Google Scholar 

  65. Ly J, Chan CT. Impact of augmenting dialysis frequency and duration on cardiovascular function. ASAIO J. 2006;52(6):e11–4.

    Article  PubMed  Google Scholar 

  66. Weinreich T, De los Rios T, Gauly A, Passlick-Deetjen J. Effects of an increase in time vs. frequency on cardiovascular parameters in chronic hemodialysis patients. Clin Nephrol. 2006;66(6):433–9.

    Article  CAS  PubMed  Google Scholar 

  67. Chazot C, Charra B, Laurent G, et al. Interdialysis blood pressure control by long haemodialysis sessions. Nephrol Dial Transplant. 1995;10(6):831–7.

    CAS  PubMed  Google Scholar 

  68. Ayus JC, Go AS, Valderrabano F, et al. Effects of erythropoietin on left ventricular hypertrophy in adults with severe chronic renal failure and hemoglobin <10 g/dL. Kidney Int. 2005;68(2):788–95.

    Article  CAS  PubMed  Google Scholar 

  69. Parfrey PS, Lauve M, Latremouille-Viau D, Lefebvre P. Erythropoietin therapy and left ventricular mass index in CKD and ESRD patients: a meta-analysis. Clin J Am Soc Nephrol. 2009;4(4):755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Galetta F, Cupisti A, Franzoni F, et al. Left ventricular function and calcium phosphate plasma levels in uraemic patients. J Intern Med. 2005;258(4):378–84.

    Article  CAS  PubMed  Google Scholar 

  71. Li S, Collins AJ. Association of hematocrit value with cardiovascular morbidity and mortality in incident hemodialysis patients. Kidney Int. 2004;65(2):626–33.

    Article  PubMed  Google Scholar 

  72. Saleh FN, Schirmer H, Sundsfjord J, Jorde R. Parathyroid hormone and left ventricular hypertrophy. Eur Heart J. 2003;24(22):2054–60.

    Article  CAS  PubMed  Google Scholar 

  73. Walker MD, Silverberg SJ. Cardiovascular aspects of primary hyperparathyroidism. J Endocrinol Invest. 2008;31(10):925–31.

    Article  CAS  PubMed  Google Scholar 

  74. Aladren Regidor MJ. Cinacalcet reduces vascular and soft tissue calcification in secondary hyperparathyroidism (SHPT) in hemodialysis patients. Clin Nephrol. 2009;71(2):207–13.

    Article  CAS  PubMed  Google Scholar 

  75. Thadhani R, Appelbaum E, Pritchett Y, et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA. 2012;307(7):674–84.

    Article  CAS  PubMed  Google Scholar 

  76. Investigators ET, Chertow GM, Block GA, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367(26):2482–94.

    Article  Google Scholar 

  77. Maduell F, Moreso F, Pons M, et al. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol. 2013;24(3):487–97.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dzemidzic J, Rasic S, Saracevic A, et al. Predictors of left ventricular remodelling in kidney transplant recipients in the first posttransplant year. Bosnian J Basic Med Sci. 2010;10(Suppl 1):S51–5.

    Google Scholar 

  79. McGregor E, Stewart G, Rodger RS, Jardine AG. Early echocardiographic changes and survival following renal transplantation. Nephrol Dial Transplant. 2000;15(1):93–8.

    Article  CAS  PubMed  Google Scholar 

  80. Torres S, Maximino J, Pereira S, et al. Morphologic course of the left ventricle after renal transplantation. Echocardiographic study. Port J Cardiol. 1991;10(6):497–501.

    CAS  Google Scholar 

  81. Dudziak M, Debska-Slizien A, Rutkowski B. Cardiovascular effects of successful renal transplantation: a 30-month study on left ventricular morphology, systolic and diastolic functions. Transpl Proc. 2005;37(2):1039–43.

    Article  CAS  Google Scholar 

  82. Pirat B, Bozbas H, Demirtas S, et al. Comparison of tissue Doppler echocardiography parameters in patients with end-stage renal disease and renal transplant recipients. Transpl Proc. 2008;40(1):107–10.

    Article  CAS  Google Scholar 

  83. Himelman RB, Landzberg JS, Simonson JS, et al. Cardiac consequences of renal transplantation: changes in left ventricular morphology and function. J Am Coll Cardiol. 1988;12(4):915–23.

    Article  CAS  PubMed  Google Scholar 

  84. Peteiro J, Alvarez N, Calvino R, Penas M, Ribera F, Castro Beiras A. Changes in left ventricular mass and filling after renal transplantation are related to changes in blood pressure: an echocardiographic and pulsed Doppler study. Cardiology. 1994;85(5):273–83.

    Article  CAS  PubMed  Google Scholar 

  85. Rigatto C, Foley RN, Kent GM, Guttmann R, Parfrey PS. Long-term changes in left ventricular hypertrophy after renal transplantation. Transplantation. 2000;70(4):570–5.

    Article  CAS  PubMed  Google Scholar 

  86. Sahagun-Sanchez G, Espinola-Zavaleta N, Lafragua-Contreras M, et al. The effect of kidney transplant on cardiac function: an echocardiographic perspective. Echocardiography. 2001;18(6):457–62.

    Article  CAS  PubMed  Google Scholar 

  87. Iqbal MM, Rashid HU, Banerjee SK, Rahman MH, Mohsin M. Changes in cardiac parameters of renal allograft recipients: a compilation of clinical, laboratory, and echocardiographic observations. Transpl Proc. 2008;40(7):2327–9.

    Article  CAS  Google Scholar 

  88. Dounousi E, Mitsis M, Naka KK, et al. Differences in cardiac structure assessed by echocardiography between renal transplant recipients and chronic kidney disease patients. Transpl Proc. 2014;46(9):3194–8.

    Article  CAS  Google Scholar 

  89. Ferreira SR, Moises VA, Tavares A, Pacheco-Silva A. Cardiovascular effects of successful renal transplantation: a 1-year sequential study of left ventricular morphology and function, and 24-hour blood pressure profile. Transplantation. 2002;74(11):1580–7.

    Article  PubMed  Google Scholar 

  90. Patel RK, Mark PB, Johnston N, McGregor E, Dargie HJ, Jardine AG. Renal transplantation is not associated with regression of left ventricular hypertrophy: a magnetic resonance study. Clin J Am Soc Nephrol. 2008;3(6):1807–11.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Huting J. Course of left ventricular hypertrophy and function in end-stage renal disease after renal transplantation. Am J Cardiol. 1992;70(18):1481–4.

    Article  CAS  PubMed  Google Scholar 

  92. De Lima JJ, Abensur H, da Fonseca JA, Krieger EM, Pileggi F. Comparison of echocardiographic changes associated with hemodialysis and renal transplantation. Artif Organs. 1995;19(3):245–50.

    Article  PubMed  Google Scholar 

  93. Slubowska K, Lichodziejewska B, Pruszczyk P, Szmidt J, Durlik M. Left ventricular hypertrophy in renal transplant recipients in the first year after transplantation. Transpl Proc. 2014;46(8):2719–23.

    Article  CAS  Google Scholar 

  94. Meyer DM, Rogers JG, Edwards LB, et al. The future direction of the adult heart allocation system in the United States. Am J Transplant. 2015;15(1):44–54.

    Article  CAS  PubMed  Google Scholar 

  95. Wolfe RA, Ashby VB, Milford EL, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med. 1999;341(23):1725–30.

    Article  CAS  PubMed  Google Scholar 

  96. West M, Sutherland DE, Matas AJ. Kidney transplant recipients who die with functioning grafts: serum creatinine level and cause of death. Transplantation. 1996;62(7):1029–30.

    Article  CAS  PubMed  Google Scholar 

  97. Israni AK, Snyder JJ, Skeans MA, Kasiske BL, Investigators P. Clinical diagnosis of metabolic syndrome: predicting new-onset diabetes, coronary heart disease, and allograft failure late after kidney transplant. Transpl Int. 2012;25(7):748–57.

    Article  PubMed  Google Scholar 

  98. Siedlecki A, Foushee M, Curtis JJ, et al. The impact of left ventricular systolic dysfunction on survival after renal transplantation. Transplantation. 2007;84(12):1610–7.

    Article  PubMed  Google Scholar 

  99. Josephson CB, Delgado D, Schiff J, Ross H. The effectiveness of renal transplantation as a treatment for recurrent uremic cardiomyopathy. Can J Cardiol. 2008;24(4):315–7.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hawwa N, Shrestha K, Hammadah M, Yeo PS, Fatica R, Tang WH. Reverse remodeling and prognosis following kidney transplantation in contemporary patients with cardiac dysfunction. J Am Coll Cardiol. 2015;66(16):1779–87.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wali RK, Wang GS, Gottlieb SS, et al. Effect of kidney transplantation on left ventricular systolic dysfunction and congestive heart failure in patients with end-stage renal disease. J Am Coll Cardiol. 2005;45(7):1051–60.

    Article  PubMed  Google Scholar 

  102. Melchor JL, Espinoza R, Gracida C. Kidney transplantation in patients with ventricular ejection fraction less than 50 percent: features and posttransplant outcome. Transpl Proc. 2002;34(7):2539–40.

    Article  CAS  Google Scholar 

  103. Oppert M, Schneider U, Bocksch W, et al. Improvement of left ventricular function and arterial blood pressure 1 year after simultaneous pancreas kidney transplantation. Transpl Proc. 2002;34(6):2251–2.

    Article  CAS  Google Scholar 

  104. Parfrey PS, Foley RN, Harnett JD, Kent GM, Murray DC, Barre PE. Outcome and risk factors for left ventricular disorders in chronic uraemia. Nephrol Dial Transplant. 1996;11(7):1277–85.

    Article  CAS  PubMed  Google Scholar 

  105. Burt RK, Gupta-Burt S, Suki WN, Barcenas CG, Ferguson JJ, Van Buren CT. Reversal of left ventricular dysfunction after renal transplantation. Ann Intern Med. 1989;111(8):635–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burhan Mohamedali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mohamedali, B. (2017). Cardiomyopathy in the Potential Kidney Transplant Candidate. In: Rangaswami, J., Lerma, E., Ronco, C. (eds) Cardio-Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-319-56042-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56042-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56040-3

  • Online ISBN: 978-3-319-56042-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics