Advertisement

General Introduction

  • Gulzhian I. Dzhardimalieva
  • Igor E. Uflyand
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 257)

Abstract

The polymeric metal chelates present class of chemical compounds including polymeric chain (organic, inorganic, mixed or biological nature) and metal chelate cycles. This direction of chemical science has appeared in the last decades of twentieth century at the junction of different fields of knowledge: coordination, polymer, physical, organic, colloid chemistry, biology, medicine and materials science. The need for accelerated development of this direction is confirmed by a rapid increase in the number of publications devoted to the study of polymeric metal chelates and their use as precursors of functional and nanoscale materials. Despite the variety of existing methods for synthesizing polymeric metal chelates, the main method still remains the direct interaction of metal compounds with chelating polymeric ligands. Therefore, the molecular design of chelating macroligands is an important, and in some cases, defining task both from the point of view of obtaining metal chelates with predetermined properties and structure, and their subsequent practical use. At the same time, in recent years a number of new methods have been developed for the preparation of polymeric metal chelates, primarily on the basis of metal chelate monomers, which allow one to obtain complexes in one stage with a targeted composition and structure. Progress in this field of chemistry is also associated with the emergence of new types of polymeric metal chelates, in particular, metal chelate dendrimers, star and hyperbranched polymers, as well as coordination polymers and supramolecular metal chelate polymers.

References

  1. 1.
    A.D. Pomogailo, I.E. Uflyand, Makromolekulayrnye Metallokhelaty (Macromolecular Metal Chelates) (Khimiya, Moscow, 1991)Google Scholar
  2. 2.
    A.D. Pomogailo, A.S. Rozenberg, I.E. Uflyand, Metal Nanoparticles in Polymers (Khimiya, Moscow, 2000)Google Scholar
  3. 3.
    D. Wohrle, A.D. Pomogailo, Metal Complexes and Metals in Macromolecules (Wiley-VCH, Weinheim, 2003)CrossRefGoogle Scholar
  4. 4.
    I. Manners, Synthetic Metal-containing Polymers (Wiley VCH, Weinheim, 2004)Google Scholar
  5. 5.
    A.S. Abd-El-Aziz, C.E. Carraher, C.U. Pittman, J.E. Sheats, M. Zeldin, Macromolecules Containing Metal and Metal-Like Elements, Biomedical Applications (Wiley, Hoboken, New Jersey, 2004)CrossRefGoogle Scholar
  6. 6.
    A.D. Pomogailo, V.N. Kestelman, Metallopolymer Nanocomposites (Springer, Berlin, Heidelberg, 2005)Google Scholar
  7. 7.
    V. Chandrasekhar, Inorganic and Organometallic Polymers (Springer, Berlin, Heidelberg, 2005)Google Scholar
  8. 8.
    Ch. Carraher Jr., C. Pittman Jr., A. Abd-El-Aziz, M. Zeldin, J. Sheats (eds.), Metal and Metalloid Containing Macromolecules (Wiley-Interscience, NY, 2006)Google Scholar
  9. 9.
    A. Abd-El-Aziz, C.E. Carraher Jr., C.U. Pittman, M. Zeldin (eds.), Macromolecules Containing Metal and Metal-Like Elements (J. Wiley and Sons, New Jersey, 2006)Google Scholar
  10. 10.
    J.H. Zagal, F. Bedioui, J.P. Dodelet, N 4 -Macrocyclic Metal Complexes (Springer, NY, 2006)CrossRefGoogle Scholar
  11. 11.
    U.S. Schubert, H. Hofmeier, G.R. Newkome, Modern Terpyridine Chemistry (Wiley-VCH, Weinheim, 2006)CrossRefGoogle Scholar
  12. 12.
    A.S. Abd-El-Aziz, I. Manners, Frontiers in Transition Metal-Containing Polymers (Wiley, Hoboken, New Jersey, 2007)CrossRefGoogle Scholar
  13. 13.
    A.S. Abd-El-Aziz, C.E. Carraher, C.U. Pittman, Inorganic and Organometallic Macromolecules: Design and Applications (Springer, NY, 2008)CrossRefGoogle Scholar
  14. 14.
    A.D. Pomogailo, G.I. Dzhardimalieva, Monomer and Polymer Metal Carboxylates (Fizmatlit, Moscow, 2009)Google Scholar
  15. 15.
    A.D. Pomogailo, G.I. Dzhardimalieva, V.N. Kestelman, Macromolecular Metal Carboxylates and Their Nanocomposites (Springer, Berlin, Heidelberg, 2010)CrossRefGoogle Scholar
  16. 16.
    U.S. Schubert, A. Winter, G.R. Newkome (eds.), Terpyridine-based Materials (For Catalytic, Optoelectronic and Life Science Applications (Wiley-VCH, Weinheim, 2011)Google Scholar
  17. 17.
    A.S. Abd-El-Aziz, J.L. Pilfold, I. Kucukkaya, M.S. Vandel, Metal-Containing Polymers. Encyclopedia of Polymer Science and Technology (2012)Google Scholar
  18. 18.
    A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, Stoichiometry of Polymer Complexes, in Stoichiometry and Research—The Importance of Quantity in Biomedicine, ed. by A. Innocenti (InTech, Rijeka, Croatia, 2012)Google Scholar
  19. 19.
    A.D. Pomogailo, G.I. Dzhardimalieva, Nanostructured Materials Preparation via Condensation Ways (Springer, Dordrecht, 2014)CrossRefGoogle Scholar
  20. 20.
    A.D. Pomogailo, G.I. Dzhardimalieva, Metallopolymeric Hybrid Nanocomposities (Nauka, Moscow, 2015)Google Scholar
  21. 21.
    U.S. Schubert, A. Winter, Supramolecular Assemblies: Polymers and Discrete Systems (Wiley-VCH Verlag, Weinheim, 2015)Google Scholar
  22. 22.
    R.K. Khandal, M. Tyagi, G. Seshadri, Metal Containing Polymers for Optical Applications: Metal Containing Composites with Tailor Made Optical Properties (Lambert, 2010)Google Scholar
  23. 23.
    C.-L. Ho, W.-Y. Wong, Coord. Chem. Rev. 255, 2469 (2011)CrossRefGoogle Scholar
  24. 24.
    A.S. Abd-El-Aziz, P.O. Shipman, B.N. Boden, W.S. McNeil, Prog. Polym. Sci. 35, 714 (2010)CrossRefGoogle Scholar
  25. 25.
    S.-H. Liao, J.-R. Shiu, S.-W. Liu, S.-J. Yeh, Y.-H. Chen, C.-T. Chen, T.J. Chow, C.-I. Wu. J. Am. Chem. Soc. 131, 763 (2009)CrossRefGoogle Scholar
  26. 26.
    G.R. Whittell, I. Manners, Adv. Mat. 19, 3439 (2007)CrossRefGoogle Scholar
  27. 27.
    S.-J. Liu, Y. Chen, W.-J. Xu, Q. Zhao, W. Huang, Macromol. Rapid Commun. 33, 461 (2012)CrossRefGoogle Scholar
  28. 28.
    V. Marin, E. Holder, R. Hoogenboom, U.S. Schubert, Chem. Soc. Rev. 36, 618 (2007)CrossRefGoogle Scholar
  29. 29.
    G.R. Whittell, M.D. Hager, U.S. Schubert, I. Manners, Nat. Mat. 10, 176 (2011)CrossRefGoogle Scholar
  30. 30.
    A.S. Abd-El-Aziz, E.A. Strohm, Polymer 53, 4879 (2012)CrossRefGoogle Scholar
  31. 31.
    D.G. Kurth, Sci. Technol. Adv. Mater. 9, 014103 (2008)CrossRefGoogle Scholar
  32. 32.
    R.H. Staff, M. Gallei, M. Mazurowski, M. Rehahn, R. Berger, K. Landfester, D. Crespy, ACS Nano. 6, 9042 (2012)CrossRefGoogle Scholar
  33. 33.
    J. Elbert, M. Gallei, C. Rüttiger, A. Brunsen, H. Didzoleit, B. Stühn, M. Rehahn, Organometallics. 32, 5873 (2013)CrossRefGoogle Scholar
  34. 34.
    M. Gallei, Macromol. Chem. Phys. 215, 699 (2014)CrossRefGoogle Scholar
  35. 35.
    A.S. Abd-El-Aziz, C. Agatemor, N. Etkin, Macromol. Rapid Commun. 35, 513 (2014)CrossRefGoogle Scholar
  36. 36.
    J. Elbert, F. Krohm, C. Rüttiger, S. Kienle, H. Didzoleit, B.N. Balzer, T. Hugel, B. Stühn, M. Gallei, A. Brunsen, Adv. Funct. Mater. 24, 1591 (2014)CrossRefGoogle Scholar
  37. 37.
    A.D. Russell, R.A. Musgrave, L.K. Stoll, P. Choi, H. Qiu, I. Manners, J. Organomet. Chem. 784, 24 (2015)CrossRefGoogle Scholar
  38. 38.
    A. Valente, P. Zinck, Rec. Res. Devel. Polym. Sci. 11, 99 (2012)Google Scholar
  39. 39.
    J.C. Swarts, M.J. Cook, E.N. Baker, Met. Based Drugs 2008, 286363 (2008)Google Scholar
  40. 40.
    E.P. Ivanova, K. Bazaka, R.J. Crawford, New Functional Biomaterials for Medicine and Healthcare (Woodhead Publishing, Oxford, Cambridge, Philadelphia, New Delhi, 2014)Google Scholar
  41. 41.
    M.R. Roner, C.E. Carraher Jr., K. Shahi, G. Barot, Materials. 4, 991 (2011)CrossRefGoogle Scholar
  42. 42.
    X. Zhao, J.M. Courtney, H. Qian (eds.), Bioactive Materials in Medicine: Design and Applications (Woodhead Publishing, Oxford, Cambridge, Philadelphia, New Delhi, 2011)Google Scholar
  43. 43.
    Y. Yan, J. Zhang, L. Ren, C. Tang, Chem. Soc. Rev. 45, 5232 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Bonnet, J.-P. Collin, M. Koizumi, P. Mobian, J.-P. Sauvage, Adv. Mat. 18, 1239 (2006)CrossRefGoogle Scholar
  45. 45.
    P. Ceroni, A. Credi, M. Venturi, Chem. Soc. Rev. 43, 4068 (2014)CrossRefGoogle Scholar
  46. 46.
    M. Schmittel, P. Mal, Chem. Commun. 960 (2008)Google Scholar
  47. 47.
    X. Lu, X. Li, Y. Cao, A. Schultz, J.-L. Wang, C.N. Moorefield, C. Wesdemiotis, S.Z.D. Cheng, G.R. Newkome, Angew. Chem. Int. Ed. 52, 7728 (2013)CrossRefGoogle Scholar
  48. 48.
    G.R. Newkome, P. Wang, C.N. Moorefield, T.J. Cho, P.P. Mohapatra, S. Li, S.-H. Hwang, O. Lukoyanova, L. Echegoyen, J.A. Palagallo, V. Iancu, S.-W. Hla, Science. 312, 1782 (2006)CrossRefGoogle Scholar
  49. 49.
    R. Sarkar, K. Guo, C.N. Moorefield, M.J. Saunders, C. Wesdemiotis, G.R. Newkome, Angew. Chem. Int. Ed. 126, 12378 (2014)CrossRefGoogle Scholar
  50. 50.
    Y. Nishimori, K. Kanaizuka, M. Murata, H. Nishihara, Chem. Asian J. 2, 367 (2007)CrossRefGoogle Scholar
  51. 51.
    P. Broekmann, K.-H. Dötz, C.A. Schalley (eds.), Templates in Chemistry III (Springer, Berlin, 2009)Google Scholar
  52. 52.
    F.C. Krebs, M. Biancardo, Sol. Energy Mater. Sol. Cells. 90, 142 (2006)CrossRefGoogle Scholar
  53. 53.
    P. Wang, C.N. Moorefield, S. Li, J. Manriquez, C.D. Shreiner, E. Bustos, A.L. Hartley, L.A. Godinez, G.R. Newkome, J. Mater. Chem. 17, 3023 (2007)CrossRefGoogle Scholar
  54. 54.
    A.D. Pomogailo, E.F. Vainshtein, I.E. Uflyand, Russ. Chem. Rev. 64, 913 (1995)CrossRefGoogle Scholar
  55. 55.
    M. Foscato, B.J. Houghton, G. Occhipinti, R.J. Deeth, V.R. Jensen, J. Chem. Inf. Model. 55, 1844 (2015)CrossRefGoogle Scholar
  56. 56.
    S. Fortuna, F. Fogolari, G. Scoles, Sci. Rep. 5, Article number: 15633 (2015)Google Scholar
  57. 57.
    S. Di Stefano, G. Ercolani, Adv. Phys. Org. Chem. 50, 1 (2016)Google Scholar
  58. 58.
    A.D. Pomogailo, I.E. Uflyand, J. Coord. Chem. 23, 183 (1991)Google Scholar
  59. 59.
    I.E. Uflyand, A.D. Pomogailo, Russ. Chem. Rev. 60, 773 (1991)CrossRefGoogle Scholar
  60. 60.
    A.D. Pomogailo, V.V. Savostyanov, Synthesis and Polymerization of Metal-Containing Monomers (CRC Press, Boca Raton, London, NY, 1994)Google Scholar
  61. 61.
    I. Asselberghs, M.J. Therien, B.J. Coe, J.A. McCleverty, K. Clays, in Metal-Containing and Metallosupra-molecular Polymers and Materials, ACS Symposium Ser., vol. 928 (ACS, Washington, DC, 2006), p. 527Google Scholar
  62. 62.
    A.C.W. Leung, M.J. MacLachlan, J. Inorg. Organomet. Polym. 17, 57 (2007)CrossRefGoogle Scholar
  63. 63.
    W.K. Chan, Coord. Chem. Rev. 251, 2104 (2007)CrossRefGoogle Scholar
  64. 64.
    A. Wild, A. Winter, F. Schlutter, U.S. Schubert, Chem. Soc. Rev. 40, 1459 (2011)CrossRefGoogle Scholar
  65. 65.
    G.I. Dzhardimalieva, I.E. Uflyand, J. Inorg. Organomet. Polym. 26, 1112 (2016)CrossRefGoogle Scholar
  66. 66.
    S. Campagna, P. Ceroni, F. Puntoriero (eds.), Designing Dendrimers (Wiley, Hoboken, 2012)Google Scholar
  67. 67.
    Y. Cheng (ed.), Dendrimer-based drug delivery systems: from theory to practice (John Wiley & Sons, Hoboken, New Jersey, 2012)Google Scholar
  68. 68.
    D.A. Tomalia, J.B. Christensen, U. Boas, Dendrimers, Dendrons, and Dendritic Polymers: Discovery, Applications, and the Future (Cambridge University Press, Cambridge, 2012)CrossRefGoogle Scholar
  69. 69.
    F. Vögtle, G. Richardt, N. Werner, Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications (Wiley, Weinheim, 2009)CrossRefGoogle Scholar
  70. 70.
    К.D. Karlin, D.T.D. Lili, C.L. Cahill, Coordination Polymers of the Lanthanide Elements (John Wiley & Sons Inc, Weinheim, 2008)Google Scholar
  71. 71.
    S.R. Batten, D.R. Turner, M.S. Neville, Coordination Polymers: Design, Analysis and Application (RSC, Cambridge, 2009)Google Scholar
  72. 72.
    K. Naka, Metal Organic Framework (MOF), in Encyclopedia of Polymeric Nanomaterials, eds. S. Kobayashi, K. Müllen (Springer, Berlin, Heidelberg, 2015)Google Scholar
  73. 73.
    M.C. Hong, L. Chen (eds.), Design and Construction of Coordination Polymers (Wiley, Weinheim, 2009)Google Scholar
  74. 74.
    J. Jiang (ed.), Metal-Organic Frameworks: Materials Modeling towards Engineering Applications (CRC, Boca Raton, 2015)Google Scholar
  75. 75.
    L.R. MacGillivray (ed.), Metal-Organic Frameworks: Design and Application (Wiley, Weinheim, 2010)Google Scholar
  76. 76.
    L.R. MacGillivray, C.M. Lukehart (eds.), Metal-Organic Framework Materials (Wiley, Weinheim, 2014)Google Scholar
  77. 77.
    O.L. Ortiz, L.D. Ramírez, Coordination Polymers and Metal Organic Frameworks: Properties, Types, and Applications (Nova Science Publishers, NY, 2012)Google Scholar
  78. 78.
    J.C. Bailar, Jr., in Preparative Inorganic Reactions, vol. 1, ed. by W.L. Jolly (Interscience, NY, 1964)Google Scholar
  79. 79.
    Y. Zhao, K. Li, J. Li, Z. Naturforsch. 65b, 976 (2010)Google Scholar
  80. 80.
    W. Xuan, C. Zhu, Y. Liu, Y. Cui. Chem. Soc. Rev. 41, 1677 (2012)CrossRefGoogle Scholar
  81. 81.
    O.M. Yaghi, G. Li, H. Li, Nature 378, 703 (1995)CrossRefGoogle Scholar
  82. 82.
    O.M. Yaghi, H. Li, J. Am. Chem. Soc. 117, 10401 (1995)CrossRefGoogle Scholar
  83. 83.
    J.M. Lehn, Supramolecular Chemistry—Concepts and Perspectives (VCH, Weinheim, 1995)CrossRefGoogle Scholar
  84. 84.
    J.W. Steed, J.L. Atwood, Supramolecular Chemistry (Wiley, Weinheim, 2005)Google Scholar
  85. 85.
    J.W. Steed, J.L. Atwood (eds.), Encyclopedia of Supramolecular Chemistry (Marcel Dekker, NY, 2004)Google Scholar
  86. 86.
    P.J. Cragg, Practical Supramolecular Chemistry (John Wiley & Sons Ltd, Chichester, UK, 2006)Google Scholar
  87. 87.
    K. Ariga, T. Kunitake, Supramolecular Chemistry—Fundamentals and Applications (Springer-Verlag, Heidelberg, 2006)Google Scholar
  88. 88.
    J.W. Steed, D.R. Turner, K.J. Wallace, Core Concepts in Supramolecular Chemistry and Nanochemistry (John Wiley & Sons Ltd., Weinheim, 2007)Google Scholar
  89. 89.
    B.M. McKenzie, S.J. Rowan, Metallosupramolecular polymers, networks, and gels, in Molecular Recognition and Polymers: Control of Polymer Structure and Self-Assembly, eds. by V. Rotello, S. Thayumanavan (Wiley, Weinheim, 2008)Google Scholar
  90. 90.
    B.M. McKenzie, S.J. Rowan, Metallo-Supramolecular Polymers, in Encyclopedia of Supramolecular Chemistry, eds. by J.L. Atwood, J.W. Steed (CRC Press, Boca Raton, 2007)Google Scholar
  91. 91.
    A. Winter, U.C. Schubert, Chem. Soc. Rev. 45, 5311 (2016)CrossRefGoogle Scholar
  92. 92.
    A.P. Reverberi, N.T. Kuznetsov, V.P. Meshalkin, M. Salerno, B. Fabiano, Theor. Found. Chem. Eng. 50, 59 (2016)CrossRefGoogle Scholar
  93. 93.
    W.L. Leong, J.J. Vittal, Chem. Rev. 111, 688 (2010)CrossRefGoogle Scholar
  94. 94.
    H. Liu, J. Owen, A.P. Alivisatos, J. Am. Chem. Soc. 129, 305 (2007)CrossRefGoogle Scholar
  95. 95.
    G.I. Dzhardimalieva, A.D. Pomogailo, Russ. Chem. Rev. 77, 259 (2008)CrossRefGoogle Scholar
  96. 96.
    A.D. Pomogailo, A.S. Rozenberg, G.I. Dzhardimalieva, Russ. Chem. Rev. 80, 257 (2011)CrossRefGoogle Scholar
  97. 97.
    M.Y. Masoomi, A. Morsali, Coord. Chem. Rev. 256, 2921 (2012)CrossRefGoogle Scholar
  98. 98.
    B.I. Kharisov, O.V. Kharissova, U.O. Méndez, J. Coord. Chem. 66, 3791 (2013)CrossRefGoogle Scholar
  99. 99.
    O. Carp, Materials obtained by solid-state thermal decomposition of coordination compounds and metal-organic coordination polymers, in Reactions and Mechanisms in Thermal Analysis of Advanced Materials, eds. by A. Tiwari, B. Raj (Scrivener Publishing LLC, 2015)Google Scholar
  100. 100.
    Y. Song, X. Li, L. Sun, L. Wang, RSC Adv. 5, 7267 (2015)CrossRefGoogle Scholar
  101. 101.
    J.-K. Sun, Q. Xu, Energy Environ. Sci. 7, 2071 (2014)CrossRefGoogle Scholar
  102. 102.
    M. Ramazani, A. Morsali, Ultrason. Sonochem. 18, 1160 (2011)CrossRefGoogle Scholar
  103. 103.
    M. Ramanathana, S.B. Darling, Polym. Int. 62, 1123 (2013)CrossRefGoogle Scholar
  104. 104.
    B.I. Kharisov, H.V. Rasika Dias, O.V. Kharissova, V.M. Jiménez-Pérez, B.O. Pérez, B.M. Flores, RSC Adv. 2, 9325 (2012)CrossRefGoogle Scholar
  105. 105.
    M. Schmittel, Chem. Commun. 51, 14956 (2015)CrossRefGoogle Scholar
  106. 106.
    J. Zhou, G.R. Whittell, I. Manners, Macromolecules 47, 3529 (2014)CrossRefGoogle Scholar
  107. 107.
    C.G. Hardy, J. Zhang, Y. Yan, L. Ren, C. Tang, Prog. Polym. Sci. 39, 1742 (2014)CrossRefGoogle Scholar
  108. 108.
    A.K. Yetisen, M.M. Qasim, S. Nosheen, T.D. Wilkinson, C.R. Lowe, J. Mater. Chem. C. 2, 3569 (2014)CrossRefGoogle Scholar
  109. 109.
    X. Wang, R. McHale, Macromol. Rapid Commun. 31, 331 (2010)CrossRefGoogle Scholar
  110. 110.
    Y. Nishimori, K. Kanaizuka, M. Murata, H. Nishihara, Chem. Asian J. 2, 367 (2007)CrossRefGoogle Scholar
  111. 111.
    V.P. Smagin, Rev. J. Chem. 3, 163 (2013)CrossRefGoogle Scholar
  112. 112.
    F.C. Krebs, M. Biancardo, Sol. Energy Mater. Sol. Cells. 90, 142 (2006)CrossRefGoogle Scholar
  113. 113.
    P. Wang, C.N. Moorefield, S. Li, J. Manriquez, C.D. Shreiner, E. Bustos, A.L. Hartley, L.A. Godinez, G.R. Newkome, J. Mater. Chem. 17, 3023 (2007)CrossRefGoogle Scholar
  114. 114.
    M.W. Urban (ed.), Handbook of Stimuli-Responsive Materials (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011)Google Scholar
  115. 115.
    B. Sandmann, S. Bode, M.D. Hager, U.S. Schubert, Adv. Polym. Sci. 262, 239 (2013)CrossRefGoogle Scholar
  116. 116.
    S.K. Ghosh, Self-healing Materials: Fundamental, Design Strategies, and Applications (Wiley-VCH, Weinheim, 2009)Google Scholar
  117. 117.
    S. Bode, D. Sandmann, M.D. Hager, U.S. Schubert, Metal-complex-based self-healing polymers, in Self-Healing Polymers: From Principles to Applications, ed. by W.H. Binder (Wiley, 2013)Google Scholar
  118. 118.
    C.L. Lewis, E.M. Dell, J. Polym. Sci., Part B: Polym. Phys. 54, 1340 (2016)CrossRefGoogle Scholar
  119. 119.
    C. Roco, C.A. Mirkin, M.C. Hersam, Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook (Springer, Berlin, 2011)CrossRefGoogle Scholar
  120. 120.
    M. Ramanathan, S.B. Darling, Polym. Int. 62, 1123 (2013)CrossRefGoogle Scholar
  121. 121.
    M. Ramanathan, Y.-C. Tseng, K. Ariga, S.B. Darling, J. Mater. Chem. C. 1, 2080 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Department of ChemistrySouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations