Advertisement

Environmental Impacts of Rural Landscape Change During the Post-Communist Period in the Baltic Sea Region

  • Kari LehtiläEmail author
  • Patrik Dinnetz
Chapter

Abstract

Landscape change is one of the most important anthropogenic processes affecting ecosystems. Historically, there have been several far-reaching transformations of Eastern and Northern European ecosystems due to agricultural transitions. The most recent one, due to the collapse of the Soviet Union, resulted in large-scale changes in rural landscapes of Eastern Europe. In many countries, over 20% of agricultural land was abandoned. The trend is especially strong in Estonia, where 54% of arable land was abandoned between 1992 and 2005. Land abandonment can affect a variety of ecosystem traits such as biodiversity, water supply, nutrient cycling and carbon sequestration. The outcome depends on the type of land abandoned and the management following abandonment. This chapter looks at its varied implications for environmental governance.

Keywords

Land abandonment Ecosystem traits Estonia 

Notes

Acknowledgements

We thank Stig Blomskog for his comments on the manuscript

References

  1. Alcantara, C., Kuemmerle, T., Baumann, M., Bragina, E. V., Griffiths, P., Hostert, P., et al. (2013). Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environmental Research Letters, 8(3), 035035. doi: 10.1088/1748-9326/8/3/035035.CrossRefGoogle Scholar
  2. Allan, D. G., Harrison, J. A., Navarro, R., van Wilgen, B. W., & Thompson, M. W. (1997). The impact of commercial afforestation on bird populations in Mpumalanga Province, South Africa: Insights from bird-atlas data. Biological Conservation, 79(2–3), 173–185.CrossRefGoogle Scholar
  3. Amici, V., Rocchini, D., Geri, F., Bacaro, G., Marcantonio, M., & Chiarucci, A. (2012). Effects of an afforestation process on plant species richness: A retrogressive analysis. Ecological Complexity, 9, 55–62.CrossRefGoogle Scholar
  4. Baumann, M., Kuemmerle, T., Elbakidze, M., Ozdogan, M., Radeloff, V. C., Keuler, N. S., et al. (2011). Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy, 28(3), 552–562.CrossRefGoogle Scholar
  5. Bremer, L. L., & Farley, K. A. (2010). Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodiversity and Conservation, 19(14), 3893–3915.CrossRefGoogle Scholar
  6. Buscardo, E., Smith, G. F., Kelly, D. L., Freitas, H., Iremonger, S., Mitchell, F. J., et al. (2008). The early effects of afforestation on biodiversity of grasslands in Ireland. Biodiversity and Conservation, 17(5), 1057–1072.CrossRefGoogle Scholar
  7. Carson, J. K., Gleeson, D. B., Clipson, N., & Murphy, D. V. (2010). Afforestation alters community structure of soil fungi. Fungal Biology, 114(7), 580–584.CrossRefGoogle Scholar
  8. Cramer, V. A., Hobbs, R. J., & Standish, R. J. (2008). What’s new about old fields? Land abandonment and ecosystem assembly. Trends in Ecology and Evolution, 23(2), 104–112.CrossRefGoogle Scholar
  9. Ellison, D., Futter, M. N., & Bishop, K. (2012). On the forest cover-water yield debate: From demand- to supply-side thinking. Global Change Biology, 18(3), 806–820.CrossRefGoogle Scholar
  10. Estel, S., Kuemmerle, T., Alcántara, C., Levers, C., Prishchepov, A., & Hostert, P. (2015). Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sensing of Environment, 163, 312–325.CrossRefGoogle Scholar
  11. FAO. (2012). FAOSTAT, Food and Agriculture Organization of the United Nations. faostat.fao.org.Accessed 2 April 2012.
  12. Graham, C. T., Wilson, M. W., Gittings, T., Kelly, T. C., Irwin, S., Quinn, J. L., & O’Halloran, J. (in press). Implications of afforestation for bird communities: The importance of preceding land-use type. Biodiversity and Conservation. doi: 10.1007/s10531-015-0987-4.
  13. Griffiths, P., Müller, D., Kuemmerle, T., & Hostert, P. (2013). Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environmental Research Letters, 8(4), 045024. doi: 10.1088/1748-9326/8/4/045024.CrossRefGoogle Scholar
  14. Grimvall, A., Stålnacke, P., & Tonderski, A. (2000). Time scales of nutrient losses from land to sea: A European perspective. Ecological Engineering, 14(4), 363–371.CrossRefGoogle Scholar
  15. Henebry, G. M. (2009). Carbon in idle croplands. Nature, 457(7233), 1089–1090.CrossRefGoogle Scholar
  16. Holt-Jensen, A., & Raagmaa, G. (2010). Restitution of agricultural land in Estonia: Consequences for landscape development and production. Norwegian Journal of Geography, 64(3), 129–141.Google Scholar
  17. Iital, A., Stålnacke, P., Deelstra, J., Loigu, E., & Pihlak, M. (2005). Effects of large-scale changes in emissions on nutrient concentrations in Estonian rivers in the Lake Peipsi drainage basin. Journal of Hydrology, 304(1–4), 261–273.CrossRefGoogle Scholar
  18. Jõgiste, K., Metslaid, M., & Uri, V. (2015). Afforestation and land use dynamics in the Baltic states. In J. A. Stanturf (Ed.), Restoration of boreal and temperate forest (pp. 187–199). Boca Raton, FA: Taylor & Francis.Google Scholar
  19. Johansson, L. J., Hall, K., Prentice, H. C., Ihse, M., Reitalu, T., Sykes, M. T., et al. (2008). Semi-natural grassland continuity, long-term land-use change and plant species richness in an agricultural landscape on Öland. Sweden. Landscape and Urban Planning, 84(3–4), 200–211.CrossRefGoogle Scholar
  20. Johansson, V., Ranius, T., & Snäll, T. (2013). Epiphyte metapopulation persistence after drastic habitat decline and low tree regeneration: Time-lags and effects of conservation actions. Journal of Applied Ecology, 50(2), 414–422.CrossRefGoogle Scholar
  21. Kana, S., Kull, T., & Otsus, M. (2008). Change in agriculturally used land and related habitat loss: A case study in eastern Estonia over 50 years. Estonian Journal of Ecology, 57(2), 119–132.CrossRefGoogle Scholar
  22. Keenleyside, C., & Tucker, G. M. (2010). Farmland abandonment in the EU: An assessment of trends and prospects. London, UK: Institute for European Environmental Policy.Google Scholar
  23. Kleijn, D., & Sutherland, W. J. (2003). How effective are European agri-environmental schemes in conserving and promoting biodiversity? Journal of Applied Ecology, 40(6), 947–969.CrossRefGoogle Scholar
  24. Komonen, A., Övermark, E., Hytönen, J., & Halme, P. (2015). Tree species influences diversity of ground-dwelling insects in afforested fields. Forest Ecology and Management, 349, 12–19.CrossRefGoogle Scholar
  25. Kubiak, D. (2013). The significance of old-growth forests in maintaining lichen diversity: An example from the remnants of the Mazovian Forest. Forest Research Papers, 74(3), 245–255.CrossRefGoogle Scholar
  26. Kuemmerle, T., Kaplan, J. O., Prishchepov, A. V., Rylsky, I., Chaskovskyy, O., Tikunov, V. S., et al. (2015). Forest transitions in Eastern Europe and their effects on carbon budgets. Global Change Biology, 21(8), 3049–3061.CrossRefGoogle Scholar
  27. Kuemmerle, T., Olofsson, P., Chaskovskyy, O., Baumann, M., Ostapowicz, K., Woodcock, C., et al. (2011). Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Global Change Biology, 17(3), 1335–1349.CrossRefGoogle Scholar
  28. Kukk, T., & Kull, K. (1997). Puisniidud. Estonia Maritima, 2: 1–249.Google Scholar
  29. Kurganova, I., Lopes de Gerenyu, V., Six, J., & Kuzyakov, Y. (2014). Carbon cost of collective farming collapse in Russia. Global Change Biology, 20(3), 938–947.CrossRefGoogle Scholar
  30. Lachance, D., Lavoie, C., & Desrochers, A. (2005). The impact of peatland afforestation on plant and bird diversity in southeastern Québec. Ecoscience, 12(2), 161–171.CrossRefGoogle Scholar
  31. Lindenmayer, D. B., & Fischer, J. (2013). Habitat fragmentation and landscape change: An ecological and conservation synthesis. Washington: Island Press.Google Scholar
  32. Löfgren, S., Gustafson, A., Steineck, S., & Stålnacke, P. (1999). Agricultural development and nutrient flows in the Baltic states and Sweden after 1988. Ambio, 28(4), 237–320.Google Scholar
  33. Lõhmus, A., & Lõhmus, P. (2008). First-generation forests are not necessarily worse than long-term managed forests for lichens and bryophytes. Restoration Ecology, 16(2), 231–239.CrossRefGoogle Scholar
  34. Lu, C., Zhao, T., Shi, X., & Cao, S. (in press). Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. Journal of Cleaner Production. doi:  10.1016/j.jclepro.2016.03.046.
  35. Luoma, S., & Okkonen, J. (2014). Impacts of future climate change and Baltic Sea level rise on groundwater recharge, groundwater levels, and surface leakage in the Hanko aquifer in Southern Finland. Water, 6(12), 3671–3700.CrossRefGoogle Scholar
  36. MacDonald, D., Crabtree, J. R., Wiesinger, G., Dax, T., Stamou, N., Fleury, P., et al. (2000). Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. Journal of Environmental Management, 59(1), 47–69.CrossRefGoogle Scholar
  37. Macours, K., & Swinnen, J. F. M. (2000). Causes of output decline in economic transition: The case of Central and Eastern European agriculture. Journal of Comparative Economics, 28(1), 172–206.CrossRefGoogle Scholar
  38. Mander, Ü. (1994). Changes of landscape structure in Estonia during the Soviet period. GeoJournal, 33(1), 45–54.CrossRefGoogle Scholar
  39. Matuszkiewicz, J. M., Kowalska, A., Kozłowska, A., Roo-Zielińska, E., & Solon, J. (2013). Differences in plant-species composition, richness and community structure in ancient and post-agricultural pine forests in central Poland. Forest Ecology and Management, 310, 567–576.CrossRefGoogle Scholar
  40. Mitchell, M. G., Suarez-Castro, A. F., Martinez-Harms, M., Maron, M., McAlpine, C., Gaston, K. J., et al. (2015). Reframing landscape fragmentation’s effects on ecosystem services. Trends in Ecology and Evolution, 30(4), 190–198.CrossRefGoogle Scholar
  41. Mourad, D. S. J., van der Perk, M., Gooch, G. D., Loigu, E., Piirimäe, K., & Stålnacke, P. (2005). GIS-based quantification of future nutrient loads into Lake Peipsi/Chudskoe using qualitative regional development scenarios. Water Science and Technology, 51(3), 355–363.Google Scholar
  42. Mourad, D. S., van der Perk, M., & Piirimäe, K. (2006). Changes in nutrient emissions, fluxes and retention in a North-Eastern European lowland drainage basin. Environmental Monitoring and Assessment, 120(1), 415–448.CrossRefGoogle Scholar
  43. Navarro, L. M., & Pereira, H. M. (2012). Rewilding abandoned landscapes in Europe. Ecosystems, 15(6), 900–912.CrossRefGoogle Scholar
  44. Olofsson, P., Kuemmerle, T., Griffiths, P., Knorn, J., Baccini, A., Gancz, V., et al. (2011). Carbon implications of forest restitution in post-socialist Romania. Environmental Research Letters, 6(4), 045202. doi: 10.1088/1748-9326/6/4/045202.CrossRefGoogle Scholar
  45. Oxbrough, A. G., Gittings, T., O’Halloran, J., Giller, P. S., & Kelly, T. C. (2007). Biodiversity of the ground-dwelling spider fauna of afforestation habitats. Agriculture, Ecosystems and Environment, 120(2–4), 433–441.CrossRefGoogle Scholar
  46. Oxbrough, A., Irwin, S., Kelly, T. C., & O’Halloran, J. (2010). Ground-dwelling invertebrates in reforested conifer plantations. Forest Ecology and Management, 259(10), 2111–2121.CrossRefGoogle Scholar
  47. Pei, N., Chen, B., & Liu, S. (2015). Pb and Cd contents in soil, water, and trees at an afforestation site, South China. Bulletin of Environmental Contamination and Toxicology, 95(5), 632–637.CrossRefGoogle Scholar
  48. Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., et al. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187), 1246752. doi: 10.1126/science.1246752.CrossRefGoogle Scholar
  49. Pitkänen, T. P., Kumpulainen, J., Lehtinen, J., Sihvonen, M., & Käyhkö, N. (2016). Landscape history improves detection of marginal habitats on semi-natural grasslands. Science of the Total Environment, 539, 359–369.CrossRefGoogle Scholar
  50. Ponette-González, A. G., Brauman, K. A., Marín-Spiotta, E., Farley, K. A., Weathers, K. C., Young, K. R., et al. (2015). Managing water services in tropical regions: From land cover proxies to hydrologic fluxes. Ambio, 44(5), 367–375.CrossRefGoogle Scholar
  51. Prishchepov, A. V., Müller, D., Dubinin, M., Baumann, M., & Radeloff, V. C. (2013). Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy, 30(1), 873–884.CrossRefGoogle Scholar
  52. Queiroz, C., Beilin, R., Folke, C., & Lindborg, R. (2014). Farmland abandonment: Threat or opportunity for biodiversity conservation? A global review. Frontiers in Ecology and the Environment, 12(5), 288–296.CrossRefGoogle Scholar
  53. Renwick, A., Jansson, T., Verburg, P. H., Revoredo-Giha, C., Britz, W., Gocht, A., et al. (2013). Policy reform and agricultural land abandonment in the EU. Land Use Policy, 30(1), 446–457.CrossRefGoogle Scholar
  54. Rudel, T. K., Perez-Lugo, M., & Zichal, H. (2000). When fields revert to forest: Development and spontaneous reforestation in post-war Puerto Rico. The Professional Geographer, 52(3), 386–397.CrossRefGoogle Scholar
  55. Ruskule, A., Nikodemus, O., Kasparinska, Z., Kasparinskis, R., & Brūmelis, G. (2012). Patterns of afforestation on abandoned agriculture land in Latvia. Agroforestry Systems, 85(2), 215–231.CrossRefGoogle Scholar
  56. Saarinen, K., & Jantunen, J. (2005). Grassland butterfly fauna under traditional animal husbandry: contrasts in diversity in mown meadows and grazed pastures. Biodiversity and Conservation, 14(13), 3201–3213.CrossRefGoogle Scholar
  57. Schierhorn, F., Müller, D., Beringer, T., Prishchepov, A. V., Kuemmerle, T., & Balmann, A. (2013). Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Global Biogeochemical Cycles, 27(4), 1175–1185.CrossRefGoogle Scholar
  58. Silva, J. P., Toland, J., Jones, W., Eldridge, J., Thorpe, E., & O’Hara, E. (2008). LIFE and Europe’s grasslands: Restoring a forgotten habitat. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  59. Smaliychuk, A., Müller, D., Prishchepov, A. V., Levers, C., Kruhlov, I., & Kuemmerle, T. (2016). Recultivation of abandoned agricultural lands in Ukraine: Patterns and drivers. Global Environmental Change, 38, 70–81.CrossRefGoogle Scholar
  60. Soliva, R. (2007). Landscape stories: Using ideal type narratives as a heuristic device in rural studies. Journal of Rural Studies, 23(1), 62–74.CrossRefGoogle Scholar
  61. Stålnacke, P., Grimvall, A., Libiseller, C., Laznik, M., & Kokorite, I. (2003). Trends in nutrient concentrations in Latvian rivers and the response to the dramatic change in agriculture. Journal of Hydrology, 283(1–4), 184–205.CrossRefGoogle Scholar
  62. Stålnacke, P., Vandsemb, S. M., Vassiljev, A., Grimvall, A., & Jolankai, G. (2004). Changes in nutrient levels in some Eastern European rivers in response to large-scale changes in agriculture. Water Science and Technology, 49(3), 29–36.Google Scholar
  63. Statistics Estonia. 2016. Eesti Statistika. www.stat.ee. Accessed 28 April 2016.
  64. Strijker, D. (2005). Marginal lands in Europe: Causes of decline. Basic and Applied Ecology, 6(2), 99–106.CrossRefGoogle Scholar
  65. Tumas, R. (2000). Evaluation and prediction of nonpoint pollution in Lithuania. Ecological Engineering, 14(4), 443–451.CrossRefGoogle Scholar
  66. van Dijk, A. I., & Keenan, R. J. (2007). Planted forests and water in perspective. Forest Ecology and Management, 251(1–2), 1–9.CrossRefGoogle Scholar
  67. Van Rompaey, A., Krasa, J., & Dostal, T. (2007). Modelling the impact of land cover changes in the Czech Republic on sediment delivery. Land Use Policy, 24(3), 576–583.CrossRefGoogle Scholar
  68. Verburg, P. H., & Overmars, K. P. (2009). Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology, 24(9), 1167–1181.CrossRefGoogle Scholar
  69. Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of earth’s ecosystems. Science, 277(5325), 494–499.CrossRefGoogle Scholar
  70. Vuichard, N., Ciais, P., Belelli, L., Smith, P., & Valentini, R. (2008). Carbon sequestration due to the abandonment of agriculture in the former USSR since 1990. Global Biogeochemical Cycles, 22, GB4018. doi: 10.1029/2008GB003212.
  71. Witmer, F. D., & O’Loughlin, J. (2009). Satellite data methods and application in the evaluation of war outcomes: Abandoned agricultural land in Bosnia-Herzegovina after the 1992–1995 conflict. Annals of the Association of American Geographers, 99(5), 1033–1044.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.School of Natural Sciences, Technology and Environmental Studies Södertörn UniversityHuddingeSweden

Personalised recommendations