Advertisement

Costs of Nutrient Management with Technological Development and Climate Change

  • Ing-Marie GrenEmail author
Chapter

Abstract

This chapter examines the implications for the cost-effective management of nitrogen and phosphorus, in the presence of uncertain climate change effects on nutrient pools in a eutrophied sea. It investigates the impact of uncertain development on nutrient abatement technologies. A dynamic cost-effectiveness model to account for differences in the sea’s adjustment to the loads of the two nutrients is used to study uncertain climate change effects with probabilistic constraints on nutrient pool targets and uncertain technological development in a mean–variance framework. Empirical application to the Baltic Sea indicates that climate change and technological development can reduce total abatement cost by half, but also increase it by 125% when uncertainty is included. Poland faces the largest cost burden—approximately 50% of the total cost in all scenarios.

Keywords

Eutrophication Climate change Dynamic cost-effectiveness model 

Notes

Acknowledgements

We are much indebted to the EU-funded BONUS project BaltCoast and to the Swedish Environmental Protection Agency Grant No. 15/24 for financial support, and to Tomasz Zylicz for valuable comments at the workshop on environmental challenges in the Baltic region at Södertörn University, 11 May 2016.

References

  1. Ahlvik, L., & Pavlova, Y. (2013). A strategic analysis of eutrophication abatement in the Baltic Sea. Environmental & Resource Economics, 56(3), 353–378.CrossRefGoogle Scholar
  2. Azar, S. A. (2010). Bounds to the coefficient of relative risk aversion. Banking and Finance Letters, 2(4), 391–398.Google Scholar
  3. Baumol, J. W., & Oates, W. E. (1988). The theory of environmental policy. Cambridge, UK: University Press.CrossRefGoogle Scholar
  4. Birge, J., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.Google Scholar
  5. Bramoullé, Y., & Olson, L. J. (2005). Allocation of pollution abatement under learning by doing. Journal of Public Economics, 89(9–10), 1935–1960.CrossRefGoogle Scholar
  6. Byström, O., Andersson, H., & Gren, I.-M. (2000). Economic criteria for restoration of wetlands under uncertainty. Ecological Economics, 35(1), 35–45.CrossRefGoogle Scholar
  7. Carraro, C., De Cian, E., Nicita, L., Massetti, E., & Verdoloni, E. (2010). Environmental policy and technical change: A survey. International Review of Environmental and Resource Economics, 4(2), 163–219.CrossRefGoogle Scholar
  8. Charnes, A., & Cooper, W. W. (1964). Deterministic equivalents for optimizing and satisfying under chance constraints. Operations Research, 11(1), 18–39.CrossRefGoogle Scholar
  9. Conley, D. J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B., et al. (2009). Hypoxia-related processes in the Baltic Sea. Environmental Science and Technology, 43(10), 3412–3420.CrossRefGoogle Scholar
  10. Elmgren, R., & Larsson, U. (2001). Eutrophication in the Baltic Sea area. Integrated coastal management issues. In B. von Bodungen & R. K. Turner (Eds.), Science and integrated coastal management (pp. 15–35). Berlin: Dahlem University Press.Google Scholar
  11. Elofsson, K. (2006). Cost-effective control of interdependent water pollutants. Environmental Management, 37(1), 54–68.CrossRefGoogle Scholar
  12. Elofsson, K. (2007). Cost uncertainty and unilateral abatement. Environmental and Resources Economics, 36(2), 143–162.CrossRefGoogle Scholar
  13. Elofsson, K. (2003). Cost-effective reductions of stochastic agricultural nitrogen loads to the Baltic Sea. Ecological Economics, 47(1), 13–31.CrossRefGoogle Scholar
  14. Gilbert, P. M. (2007). Eutrophication and harmful algal blooms: A complex global issue, examples from the Arabian Seas and including Kuwait Bay and an introduction to the global ecology and oceanography of harmful algal blooms (GEOHAB) Programme. International Journal of Oceans and Oceanography, 2(1), 157–169.Google Scholar
  15. Gren, I.-M. (2010). Climate change and the water framework directive: Cost-effectiveness and policy design for water management in the Swedish Mälar region. Climatic Change, 100(3), 463–484.CrossRefGoogle Scholar
  16. Gren, I.-M., Elofsson, K., & Jannke, P. (1997). Cost-effective nutrient reductions to the Baltic Sea. Environmental & Resource Economics, 10(4), 341–362.CrossRefGoogle Scholar
  17. Gren, I.-M., Carlsson, M., Munnich, M., & Elofsson, K. (2012). The role of stochastic carbon sink for the EU emission trading system. Energy Economics, 34, 1523–1531.CrossRefGoogle Scholar
  18. Gren, I.-M., Savchuck, O., & Jansson, T. (2013). Dynamic and spatial cost-effective mitigation of Baltic Sea eutrophication. Marine Resource Economics, 28(3), 263–284.CrossRefGoogle Scholar
  19. Gren, I. M., Baxter, P., Mikusinski, G., & Possingham, H. (2014). Cost-effective biodiversity restoration with uncertain growth in forest habitat quality. Journal of Forest Economics, 20(1), 77–92.CrossRefGoogle Scholar
  20. Gren, I.-M., & Lindkvist, M. (2014). Cost-effective management of a eutrophied sea in the presence of uncertain climate change and technological development. Working paper no. 2014–1. Department of Economics, Swedish University of Agricultural Sciences, Uppsala.Google Scholar
  21. Hart, R., & Brady, M. (2002). Nitrogen in the Baltic Sea—policy implication of stock effects. Journal of Environmental Management, 66(1), 91–103.CrossRefGoogle Scholar
  22. Hart, R. (2003). Dynamic pollution control. Ecological Economics, 47(1), 79–93.CrossRefGoogle Scholar
  23. Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., et al. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8(1), 3–13.CrossRefGoogle Scholar
  24. HELCOM. (1988, 2007, 2013). Baltic Sea Action Plan. Helsinki Commission, Helsinki, Finland. http://www.helcom.fi/baltic-sea-action-plan/nutrient-reduction-scheme/. Accessed 7 January 2014.
  25. Held, H., Kriegler, E., Lessman, K., & Edenhofer, O. (2009). Efficient climate policies under technology and climate uncertainty. Energy Economics, 31(1), S50–S61.CrossRefGoogle Scholar
  26. Helin, J., Laukkanen, M., & Koikkalainen, K. (2008). Abatement costs for agricultural nitrogen and phosphorus loads: A case study of crop farming in south-western Finland. Agricultural and Food Science, 15(4), 351–374.CrossRefGoogle Scholar
  27. Jamasb, T. (2007). Technical change theory and learning curves: Patterns of progress in electricity generation technologies. The Energy Journal, 28(3), 51–72.CrossRefGoogle Scholar
  28. Kabel, K., Moros, M., Prosche, P., Neumann, T., Adolphi, F., Andersen, T. J., et al. (2012). Impact of climate change on the Baltic Sea ecosystem over the past 1000 years. Nature Climate Change, 2, 871–874.CrossRefGoogle Scholar
  29. Kataria, M., Elofsson, K., & Hasler, B. (2010). Distributional assumptions in chance constrained programming models of stochastic water pollution. Environmental Modeling and Assessment, 15(4), 273–281.CrossRefGoogle Scholar
  30. Laukkanen, M., & Huhtala, A. (2008). Optimal management of a eutrophied coastal ecosystem: Balancing agricultural and municipal abatement measures. Environmental & Resource Economics, 39(2), 139–159.CrossRefGoogle Scholar
  31. Laukkanen, M., Ekholm, P., Huhtala, A., Pitkänen, H., Kiirikki, M., Rantanen, P., et al. (2009). Integrating ecological and economic modelling of eutrophication: Toward optimal solutions for a coastal area suffering from sediment release of phosphorus. Ambio, 38(4), 225–235.CrossRefGoogle Scholar
  32. Lindkvist, M., Gren, I.-M., & Elofsson, K. (2013). A study of climate change and cost-effective mitigation of eutrophication in the Baltic Sea. In B. R. Singh (Ed.), Climate change—Realities, impacts over ice cap, sea level and risk (pp. 459–480). Prague: INTECH.Google Scholar
  33. Lindkvist, M., & Gren, I.-M. (2013). Cost-effective nutrient abatement for the Baltic Sea under learning-by-doing induced technical change. Working paper 01/2103, Department of Economics, Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
  34. MacDonald, A., & Schrattenholzer, L. (2001). Learning rates for energy technologies. Energy Policy, 29(4), 255–261.CrossRefGoogle Scholar
  35. Mäler, K.-G., Xepapadeas, A., & de Zeeuw, A. (2003). The economics of shallow lakes. Environmental and Resource Economics, 26(4), 603–624.CrossRefGoogle Scholar
  36. Ollikainen, M., & Honkatukla, J. (2001). Towards efficient pollution control in the Baltic Sea: An anatomy of current failure with suggestions for change. Ambio, 30(4–5), 245–253.CrossRefGoogle Scholar
  37. Panzar, J., & Willig, R. (1981). Economies of scope. American Economic Review, 71(2), 268–272.Google Scholar
  38. Pyle, D., & Turnovsky, S. (1970). Safety-first and expected utility maximization in a mean-standard deviation portfolio analysis. Review of Economics and Statistics, 52(1), 75–81.CrossRefGoogle Scholar
  39. Rasmussen, T. N. (2001). CO2 abatement policy with learning-by-doing in renewable energy. Resource and Energy Economics, 23(4), 297–325.CrossRefGoogle Scholar
  40. Robertsson, M., BenDor, T., Lave, R., Riggsbee, A., Ruhl, J. B., & Doyle, M. (2014). Stacking ecosystem services. Frontiers in Ecology and the Environment, 12(3), 186–193.CrossRefGoogle Scholar
  41. Rosendahl, K. E. (2004). Cost-effective environmental policy: Implications of induced technical change. Journal of Environmental Economics and Management, 48(3), 1099–1121.CrossRefGoogle Scholar
  42. Rosenthal, R. (2008). Gams—A user’s guide. Washington, DC: GAMS Development Corporation.Google Scholar
  43. Savchuk, O. P., & Wulff, F. (2007). Modeling the Baltic Sea eutrophication in a decision support system. Ambio, 36(2–3), 141–148.CrossRefGoogle Scholar
  44. Savchuk, O. P., & Wulff, F. (2009). Long-term modelling of large-scale nutrient cycles in the entire Baltic Sea. Hydrobiologia, 629(1), 209–224.CrossRefGoogle Scholar
  45. Schmidt, M., Lorenz, A., Held, H., & Kriegler, E. (2011). Climate targets under uncertainty: Challenges and remedies. Climatic Change, 104(3), 783–791.CrossRefGoogle Scholar
  46. Shortle, J. (1990). The allocative efficiency implications of water pollution abatement cost comparisons. Water Resources Research, 26(5), 793–797.CrossRefGoogle Scholar
  47. Taha, H. (2007). Operations research. An introduction (8th ed.). London: Macmillan Publishing Co.Google Scholar
  48. Tesler, L. G. (1955–56). Safety-first and hedging. Review of Economic Studies, 23(1): 1–16.Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of EconomicsSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations