Renal Denervation

Chapter

Abstract

Renal nerve denervation (RND) entered clinical trials backed by strong preclinical evidence alongside decades of clinical research confirming the strong contribution of the adrenergic system to the hypertensive continuum. In addition, the initial technical approach for achieving nerve interruption utilized a time-tested intravascular radiofrequency ablation technique. The promise that RND could reduce blood pressure was met with great enthusiasm, and compelling results in subsequent non-randomized resistant hypertension trials further advanced the RND hypothesis. However, well-designed, blinded, sham-controlled randomized trials failed to show benefit in resistant hypertension patients. The failed randomized RND trials stunned investigators and triggered a significant pause in field maturation. The goal of this overview is to introduce the scientific foundation for the RND hypothesis followed by an introduction of some technologies being tested and conclude with literature-supported insight on where the field is heading. It does seem that the resistant hypertension patient population is particularly susceptible to regression-to-the-mean, and carefully constructed randomized trials (perhaps excluding non-responder hypertension phenotypes) may be needed to move the field forward. In the end, it seems likely that some day a device-driven adrenergic system modification will find a clinical pathway to widespread acceptance but, at the time of this overview, RND remains unproven.

Notes

Acknowledgements

The authors would like to acknowledge Khaled M Ziada, MD, FACC, FSCAI from the Gill Heart Institute, University of Kentucky, Lexington, KY, USA, who provided the angiogram from the SYMPLICITY Spyral trial patient used as the background for ◘ Fig. 89.3. We also would like to thank Dr. Bryan Williams (Chair of Medicine University College London, London, UK) who provided insight into countless trialists and scientists regarding optimizing future HTN trial designs and provided inspiration from previous lectures (◘ Table 89.3).

References

  1. 1.
    Bacon F, Jardine L, Silverthorne M. The new organon. Cambridge University Press: Cambridge UK/NY; 2000. p. xxxv, 252.CrossRefGoogle Scholar
  2. 2.
    Office USPaT. Patent Technology Monitoring Team (PTMT). 2015. Available from: https://www.uspto.gov/web/offices/ac/ido/oeip/taf/meddev.htm – Ques.
  3. 3.
    Elliott JM, Berdan LG, Holmes DR, Isner JM, King SB, Keeler GP, Kearney M, Califfi R, Topal E. One-year follow-up in the Coronary Angioplasty Versus Excisional Atherectomy Trial (CAVEAT I). Circulation. 1995;91(8):2158–66.CrossRefGoogle Scholar
  4. 4.
    Stone GW, Teirstein PS, Rubenstein R, Schmidt D, Whitlow PL, Kosinski EJ, Mishkel G, Power JA. A prospective, multicenter, randomized trial of percutaneous transmyocardial laser revascularization in patients with nonrecanalizable chronic total occlusions. J Am Coll Cardiol. 2002;39(10):1581–7.CrossRefGoogle Scholar
  5. 5.
    Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114(11):1804–14.CrossRefGoogle Scholar
  6. 6.
    DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R245–53.CrossRefGoogle Scholar
  7. 7.
    Rippy MK, Zarins D, Barman NC, Wu A, Duncan KL, Zarins CK. Catheter-based renal sympathetic denervation: chronic preclinical evidence for renal artery safety. Clin Res Cardiol. 2011;100(12):1095–101.CrossRefGoogle Scholar
  8. 8.
    Egan BM, Li J, Wagner CS. Systolic Blood Pressure Intervention Trial (SPRINT) and Target Systolic Blood Pressure in Future Hypertension Guidelines. Hypertension. 2016;68(2):318–23.CrossRefGoogle Scholar
  9. 9.
    Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.CrossRefGoogle Scholar
  10. 10.
    Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–23.CrossRefGoogle Scholar
  11. 11.
    Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sico D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117(25):e510–26.CrossRefGoogle Scholar
  12. 12.
    Sarafidis PA, Georgianos PI, Zebekakis PE. Comparative epidemiology of resistant hypertension in chronic kidney disease and the general hypertensive population. Semin Nephrol. 2014;34(5):483–91.CrossRefGoogle Scholar
  13. 13.
    Egan BM, Zhao Y, Axon RN, Brzezinski WA, Ferdinand KC. Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008. Circulation. 2011;124(9):1046–58.CrossRefGoogle Scholar
  14. 14.
    Judd E, Calhoun DA. Apparent and true resistant hypertension: definition, prevalence and outcomes. J Hum Hypertens. 2014;28(8):463–8.CrossRefGoogle Scholar
  15. 15.
    Symplicity HTNI, Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9.CrossRefGoogle Scholar
  16. 16.
    Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, Linz D, Schmieder R, Kindermann I, Sabotka PA, Scheller B, Schliach M, Laufs U, Bohm M. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60(2):419–24.CrossRefGoogle Scholar
  17. 17.
    Benamer H, Mylotte D, Garcia-Alonso C, Unterseeh T, Garot P, Louvard Y, Lefevre T, Morice MC. Renal denervation a treatment for resistant hypertension: a French experience. Ann Cardiol Angeiol (Paris). 2013;62(6):384–91.CrossRefGoogle Scholar
  18. 18.
    Davis MI, Filion KB, Zhang D, Eisenberg MJ, Afilalo J, Schiffrin EL, Joyal D. Effectiveness of renal denervation therapy for resistant hypertension: a systematic review and meta-analysis. J Am Coll Cardiol. 2013;62(3):231–41.CrossRefGoogle Scholar
  19. 19.
    Witkowski A, Prejbisz A, Florczak E, Kadziela J, Sliwinski P, Bielen P, Michalowaska I, Kabat M, WarcholE JM, Narkiewicz K, Somars VK, Sobotka PA, Janaszewicz M. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011;58(4):559–65.CrossRefGoogle Scholar
  20. 20.
    Ardian(R) Receives 2010 EuroPCR innovation award and demonstrates further durability of renal denervation treatment for hypertension [press release]. PR Newswire: Cision, 2010.Google Scholar
  21. 21.
    Ablative Solutions, Inc., receives Innovation award from medical main street at inno-vention 2012 [press release]. PRNewswire: FierceBiotech, 2012.Google Scholar
  22. 22.
    Cleveland Clinic’s Top 10 Medical innovations for 2012 include three megatrends with broad impact on clinical pathology laboratories [press release]. Dark Daily, 2012.Google Scholar
  23. 23.
    Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon M, Liu M, Mauri C, Negota M, Cohen S, Kocha-Gingh K, Townsand R, Bakris G. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.CrossRefGoogle Scholar
  24. 24.
    Fadl Elmula FE, Hoffmann P, Larstorp AC, Fossum E, Brekke M, Kjeldsen SE, Gjonnaess E, Hjornholm U, Kjaer VN, Rostrop M, Os I, Stenehjem A, Hoieggrn A. Adjusted drug treatment is superior to renal sympathetic denervation in patients with true treatment-resistant hypertension. Hypertension. 2014;63(5):991–9.CrossRefGoogle Scholar
  25. 25.
    Rosa J, Widimsky P, Tousek P, Petrak O, Curila K, Waldauf P, Bendar F, Zelinka T, Holaj R, Strauch B, Somloova Z, Taborsky M, Vaclavik J, Kocianova E, Branny M, Nykl I, Jiravsky O, Widomsky J Jr. Randomized comparison of renal denervation versus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-month results from the Prague-15 study. Hypertension. 2015;65(2):407–13.CrossRefGoogle Scholar
  26. 26.
    Ackerknecht EH. The history of the discovery of the vegatative (autonomic) nervous system. Med Hist. 1974;18(1):1–8.CrossRefGoogle Scholar
  27. 27.
    Grewal RS, Kaul CL. Importance of the sympathetic nervous system in the development of renal hypertension in the rat. Br J Pharmacol. 1971;42(4):497–504.CrossRefGoogle Scholar
  28. 28.
    Adrian ED, Bronk DW, Phillips G. Discharges in mammalian sympathetic nerves. J Physiol. 1932;74(2):115–33.CrossRefGoogle Scholar
  29. 29.
    Cannon WB. Chemical mediators of autonomic nerve impulses. Science. 1933;78(2012):43–8.CrossRefGoogle Scholar
  30. 30.
    Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc. 1953;152(16):1501–4.CrossRefGoogle Scholar
  31. 31.
    Whitelaw GP, Smithwick RH. Lumbodorsal splanchnicectomy in the treatment of essential hypertension. J Med Assoc Ga. 1958;47(10):492–7.PubMedGoogle Scholar
  32. 32.
    Longland CJ, Gibb WE. Sympathectomy in the treatment of benign and malignant hypertension; a review of 76 patients. Br J Surg. 1954;41(168):382–92.CrossRefGoogle Scholar
  33. 33.
    Abbott AC. The surgical treatment of hypertension; 17 years in retrospect. Can Med Assoc J. 1952;66(3):211–4.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Perry HM Jr. The evolution of antihypertensive therapy. Am J Cardiol. 1985;56(16):75H–80H.CrossRefGoogle Scholar
  35. 35.
    Braunwald E, Sobel BE, Braunwald NS. Treatment of paroxysmal supraventricular trachycardia by electrical stimulation of the carotid-sinus nerves. N Engl J Med. 1969;281(16):885–7.CrossRefGoogle Scholar
  36. 36.
    Christensen CM. The innovator’s dilemma : when new technologies cause great firms to fail. 1st HarperBusiness ed. New York: HarperBusiness; 2000. p. xxvii, 252.Google Scholar
  37. 37.
    Johnson MW. Seizing the white space: business model innovation for growth and renewal. Boston: Harvard Business Press; 2010. p. xvii, 208.Google Scholar
  38. 38.
    Kim WC, Mauborgne RE. Blue ocean strategy : how to create uncontested market space and make the competition irrelevant. Boston: Harvard Business School Press; 2005. p. xv, 240.Google Scholar
  39. 39.
    Schlaich MP, Schultz C, Shetty S. Renal denervation for resistant hypertension: closing in on potential confounders. J Hypertens. 2016;34(8):1505–6.CrossRefGoogle Scholar
  40. 40.
    Kassab S, Kato T, Wilkins FC, Chen R, Hall JE, Granger JP. Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension. 1995;25(4 Pt 2):893–7.CrossRefGoogle Scholar
  41. 41.
    Schlaich MP, Sobotka PA, Krum H, Whitbourn R, Walton A, Esler MD. Renal denervation as a therapeutic approach for hypertension: novel implications for an old concept. Hypertension. 2009;54(6):1195–201.CrossRefGoogle Scholar
  42. 42.
    Bohm M, Linz D, Ukena C, Mahfoud F. In: Heuser R, Schlaich M, Sievert H, editors. Renal denervation : a new approach to treatment of resistant hypertension. New York: Springer; 2014. pages cm p.Google Scholar
  43. 43.
    Sobotka PA, Mahfoud F, Schlaich MP, Hoppe UC, Bohm M, Krum H. Sympatho-renal axis in chronic disease. Clin Res Cardiol. 2011;100(12):1049–57.CrossRefGoogle Scholar
  44. 44.
    Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, Dietl KH, Rahn KH. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106(15):1974–9.CrossRefGoogle Scholar
  45. 45.
    Hering D, Esler MD, Krum H, Mahfoud F, Bohm M, Sobotka PA, Schlaich M. Recent advances in the treatment of hypertension. Expert Rev Cardiovasc Ther. 2011;9(6):729–44.CrossRefGoogle Scholar
  46. 46.
    Lombard WP. The life and work of Carl Ludwig. Science. 1916;44(1133):363–75.CrossRefGoogle Scholar
  47. 47.
    Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Fowler DR, Kolodgie PO, Virmani R, Joner M. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol. 2014;64(7):635–43.CrossRefGoogle Scholar
  48. 48.
    Bakris G, Townsend R, Liu M, Cohen S, D’Agostino R, Flack J, Kandzari D, Katzen B, Leon M, Mauri L, Negoita M, O’Neill W, Oparil S, Rocha-Singh K, Bhatt D. Impact of renal denervation on 24-hour ambulatory blood pressure: results from SYMPLICITY HTN-3. J Am Coll Cardiol. 2014;64(11):1071–8.CrossRefGoogle Scholar
  49. 49.
    Schillaci G, Boschetti E. Renal denervation for resistant hypertension. N Engl J Med. 2014;371(2):182.CrossRefGoogle Scholar
  50. 50.
    Rodriguez-Leor O, Bonet J, Bayes-Genis A. Renal denervation for resistant hypertension. N Engl J Med. 2014;371(2):182–3.CrossRefGoogle Scholar
  51. 51.
    Bhatt DL, Bakris GL. Renal denervation for resistant hypertension. N Engl J Med. 2014;371(2):184.CrossRefGoogle Scholar
  52. 52.
    Kotsis V, Stabouli S. Renal denervation for resistant hypertension. N Engl J Med. 2014;371(2):183.PubMedGoogle Scholar
  53. 53.
    It ain’t over: renal denervation data dominate EuroPCR as research presses on [press release]. Medscape, 2014.Google Scholar
  54. 54.
    Worthley S, Tsioufis C, Worthley M, Sinhal A, Chew D, Meredith I, Malaiapan Y, Papademetriou V. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J. 2013;34(28):2132–40.CrossRefGoogle Scholar
  55. 55.
    Papademetriou V, Tsioufis C, Sinhal A, Chew D, Meredith I, Malaiapan Y, Worthley M, Worthley S. Catheter-based renal denervation for resistant hypertension: 12-month results of the EnligHTN I first-in-human study using a multielectrode ablation system. Hypertension. 2014;64(3):565–72.CrossRefGoogle Scholar
  56. 56.
    EnligHTN preliminary results from the St. Jude Medical EnligHTN study demonstrate renal denervation is safe and effective [press release]. 2014.Google Scholar
  57. 57.
    Sievert H, Schofer J, Ormiston J, Hoppe U, Meredith I, Walters D, Azizi M, Diaz-Cartelle J, Cohen-Mazor M. Renal denervation with a percutaneous bipolar radiofrequency balloon catheter in patients with resistant hypertension: 6-month results from the REDUCE-HTN clinical study. EuroIntervention. 2015;10(10):1213–20.CrossRefGoogle Scholar
  58. 58.
    Daemen J, Farah A, Mazor M. Renal denervation reduces blood pressure among subgroups of patients with resistant hypertension in the REDUCE-HTN clinical study. J Am Soc Hypertens. 2014;8(4):e271–e2.CrossRefGoogle Scholar
  59. 59.
    Renal denervation using the vessix renal denervation system for the treatment of hypertension (REDUCE HTN:REINFORCE) NCT02392351, 2015.Google Scholar
  60. 60.
    Ormiston J, Watson T, Van Pelt N, Stewart R, Stewart J, White J, Doughty R, Stewart F, Macdonald R, Webster M. Renal denervation for resistant hypertension using an irrigated radiofrequency balloon: 12-month results from the Renal Hypertension Ablation System (RHAS) trial. EuroIntervention. 2013;9(1):70–4.CrossRefGoogle Scholar
  61. 61.
    Pathak A, Montalescot G. Preliminary safety, autonomic and BP results from the REALISE trial: renal denervation by ultrasound transcatheter Emission. Fundam Clin Pharmacol. 2014;28(Sppl 1):33.Google Scholar
  62. 62.
    Zeller T, Anderson B. The Paradise renal denervation system: Initial clinical results from the ACHIEVE study. Paris: EuroPCR; 2014.Google Scholar
  63. 63.
    Shetty S, Blessing E. Renal denervation using the novel therapeutic intravascular ultrasound (TIVUS) catheter system-Preliminary report of first-in-man safety and performance study. Paris: EuroPCR; 2014.Google Scholar
  64. 64.
    Neuzil, P, Whitbourn, J, Starek Z, Esler M, Brinton T, Gertner M. Optimized external focused ultrasound for renal sympathetic denervation-wave II trial. Transcatheter Cardiovascular Therapeutics 25th Annual Scientific Symposium; San Francisco, USA: Journal of the American College of Cardiology 2013, p. B20.Google Scholar
  65. 65.
    Kona Medical Inc (2016). Kona Medical Initiates Clinical Trial of Non-Invasive Therapy for Resistant Hypertension. Available from: http://konamedical.com/clinical-trial/. Nov 2016.
  66. 66.
    Neuzil M, Ormiston J, Brinton T, Starek Z, Esler M, Dawood O, Anderson T, Gertner M, Whitbourne R, Schmieder R. Externally delivered focused ultrasound for renal denervation. JACC Cardiovasc Interv. 2016;9(12):1292–9.CrossRefGoogle Scholar
  67. 67.
    Vondrakova D, Neuzil P, Petru P, Kopriva K, Sediva L, Koruth J, Dukkipati S, D’Avila A, Reddy V. Preliminary results of the human clinical trial SOUND-ITV: ultrasound mediated interventional treatment of resistant hypertension. European Heart Journal (online); 2013.CrossRefGoogle Scholar
  68. 68.
    Waksman R, Barbash IM, Chan R, Randoph P, Makuria AT, Varmani R. Beta radiation for renal nerve denervation: initial feasibility and safety. EuroIntervention. 2013;9(6):738–44.CrossRefGoogle Scholar
  69. 69.
    Heuser R, Buelna T, Gold A, Rao R, Van Alstine W. NephroBlate renal denervation system: urologic-nephrologic based approach to resistant hypertension. In: Heuser RR, Schlaich M, Sievert H, editors. The new approach to treatment of resistant hypertension. Philadelphia: Springer; 2015.Google Scholar
  70. 70.
  71. 71.
    Barbash I, Waksman R. Sympathetic renal denervation: hypertension beyond SYMPLICITY. Cardiovasc Revasc Med (Including molecular interventions). 2013;14(4):229–35.CrossRefGoogle Scholar
  72. 72.
    Bunte M, Infante de Oliveira E, Shishehbor M. Endovascular treatment of resistant and uncontrolled hypertension: therapies on the horizon. JACC Cardiovasc Interv. 2013;6(1):1–9.CrossRefGoogle Scholar
  73. 73.
    Todoran T, Basile J, Zile M. Renal sympathetic denervation for blood pressure control: a review of the current evidence and ongoing studies. J Clin Hypertens. 2014;16(5):331–41.CrossRefGoogle Scholar
  74. 74.
    Stefanadis C, Synetos A, Tsioufis C, Drakopoulou M, Tsiamis E, Tousoulis D, Agrogiannis G, Patsouris E, Toutouzas K. Chemical renal denervation by vincristine: the role of the flow rate of delivery. Cardiovasc Intervent Radiol. 2014;37(5):1336–42.CrossRefGoogle Scholar
  75. 75.
    Yu L, Scherlag B, Dormer K, Nguyen K, Pope C, Fung K, Po S. Autonomic denervation with magnetic nanoparticles. Circulation. 2010;122(25):2653–9.CrossRefGoogle Scholar
  76. 76.
    Karanasos A, Van Mieghem N, Bergmann MW, Hartman E, Ligthart J, van der Heide E, Heeger CH, Ouhlous M, Zijlstra F, Regar E, Daemen J. Multimodality intra-arterial imaging assessment of the vascular trauma induced by balloon-based and nonballoon-based renal denervation systems. Circ Cardiovasc Interv. 2015;8(7):e002474.CrossRefGoogle Scholar
  77. 77.
    Pocock SJ, Bakris G, Bhatt DL, Brar S, Fahy M, Gersh BJ. Regression to the mean in SYMPLICITY HTN-3: implications for design and reporting of future trials. J Am Coll Cardiol. 2016;68(18):2016–25.CrossRefGoogle Scholar
  78. 78.
    Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, Midulla M, Mounier-Véhier C, Courand PY, Lantelme P, Denolle T, Dourmap-Collas C, Trillaud H, Pereira H, Plouin PF, Chatellier G, Renal Denervation for Hypertension (DENERHTN) investigators. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet. 2015;385(9981):1957–65.CrossRefGoogle Scholar
  79. 79.
    Desch S, Okon T, Heinemann D, Kulle K, Röhnert K, Sonnabend M, Petzold M, Müller U, Schuler G, Eitel I, Thiele H, Lurz P. Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension. 2015;65(6):1202–8.CrossRefGoogle Scholar
  80. 80.
    Kario K, Ogawa H, Okumura K, Okura T, Saito S, Ueno T, Haskin R, Negoita M, Shimada K. SYMPLICITY HTN-Japan investigators. SYMPLICITY HTN-Japan – first randomized controlled trial of catheter-based renal denervation in Asian patients. Circulation. 2015;79(6):1222–9.CrossRefGoogle Scholar
  81. 81.
    Krum H, Schlaich M, Sobotka P, Böhm M, Mahfoud F, Rocha-Singh K, Katholi R, Esler MD. Percutaneous renal denervation in patients with treatment resistant hypertension: final 3 year report of the Symplicity HTN-1 study. Lancet. 2014;383(9917):602.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Charleston Area Medical Center Vascular Center of Excellence, Department of Vascular Medicine and Cardiovascular Intervention and West Virginia University School of MedicineCharlestonUSA
  2. 2.Charleston Area Medical Center Health Education and Research Institute and West Virginia University School of Medicine, Department of Vascular Medicine and Cardiovascular InterventionCharlestonUSA

Personalised recommendations